Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team Identifies Important Regulators of Immune Cell Response

08.09.2014

In a collaborative study, scientists from the Florida campus of The Scripps Research Institute (TSRI) and the La Jolla Institute for Allergy and Immunology have developed a more effective method to determine how immune cells called T cells differentiate into specialized types of cells that help eradicate infected cells and assist other immune cells during infection.

The new approach, published recently by the journal Immunity, could help accelerate laboratory research and the development of potential therapeutics, including vaccines. The method may also be used to identify the genes that underlie tumor cell development.


Photo courtesy of The Scripps Research Institute.

Matthew Pipkin, PhD, is an associate professor at The Scripps Research Institute, Florida campus.

There are approximately 40,000 genes in each of our cells, but functions for only about half of them are known. The classical approach to determine the function of individual genes is slow.

“Typically, studies to identify differentiation players are done one gene at a time,” said Associate Professor Matthew Pipkin of TSRI, who led the study with Professor Shane Crotty of the La Jolla Institute for Allergy and Immunology. “Our study describes a novel method that can ‘screen’ entire gene families to discover the functions of a large number of individual genes simultaneously, a far more efficient methodology.”

... more about:
»Allergy »Cell »Immunology »Jolla »R01 »Scripps »TSRI »factors »genes »mixture »previously

In the new study, the team examined genes that regulate the specialization of T cells into “effector” cells that eliminate pathogens during infection and “memory” cells that survive long-term to maintain guard after the first infection has been cleared, keeping the same pathogens from re-infecting the body after it has fought them off once.

In their experiments, Pipkin, Crotty and their colleagues created a mixture of T cells, identical except that the expression of a different gene was interrupted in each cell so the pool of cells represented disruption of a large set of genes. The researchers then assessed the cells’ response to lymphocytic choriomeningitis virus (LCMV). Before-and-after-infection studies revealed which cells with interrupted genes had emerged after infection; cells in which disruption of a particular gene resulted in it being lost from the mixture indicated the gene played a role in promoting the cell’s development into an antiviral T cell.

The study successfully identified two previously unknown factors that work together during T cell differentiation—Cyclin T1 and its catalytic partner Cdk9, which together form the transcription elongation factor (P-TEFb). While widely expressed throughout the body and used in a number of developmental processes, the factors were previously unknown to be important in the differentiation of both antiviral CD4 and CD8 T cells.

“One of the regulators we uncovered normally enhances effector T cell differentiation at the expense of generating memory T cells and T cells that orchestrate antibody production,” Pipkin said. “That’s one candidate that you’d want to ‘turn down’ if you wanted to create more T cells that form memory cells and promote a more effective antibody response—something that would be extremely helpful in developing a vaccine.”

The first authors of the study, “In Vivo RNA Interference Screens Identify Regulators of Antiviral CD4+ and CD8+ T Cell Differentiation,” are Runqiang Chen and Simon Bélanger of the La Jolla Institute for Allergy and Immunology. Other authors include Megan A. Frederick of TSRI; and Bin Li, Robert J. Johnston, Nengming Xiao, Yun-Cai Liu, Sonia Sharma, Bjoern Peters and Anjana Rao of the La Jolla Institute for Allergy and Immunology. See http://www.cell.com/immunity/abstract/S1074-7613(14)00272-6

This work was supported by the National Institutes of Health (RC4 AI092763, R01 AI095634, R01 CA42471, R01 072543 and U19 AI109976) and Frenchman’s Creek Women for Cancer Research.

About the Scripps Research Institute

The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.

Eric Sauter | newswise

Further reports about: Allergy Cell Immunology Jolla R01 Scripps TSRI factors genes mixture previously

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>