Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team Identifies A Molecular Switch Linking Infectious Disease And Depression

01.04.2009
Researchers at the University of Illinois report that IDO, an enzyme found throughout the body and long suspected of playing a role in depression, is in fact essential to the onset of depressive symptoms sparked by chronic inflammation.

Their study, just published in the journal of Immunology, is the first to identify IDO (indoleamine 2,3 dioxygenase) as a molecular switch that induces depressive symptoms in some cases of chronic inflammation.

Doctors have known for decades that patients with chronic inflammation, such as that linked to coronary heart disease or rheumatoid arthritis, are more likely than others to become depressed. Some pro-inflammatory drugs, such as interferon-alpha, which is used to treat Hepatitis C and a cancer known as malignant melanoma, also induce symptoms of depression in a significant number of patients.

In the new study, mice were exposed to Bacille Calmette–Guérin (BCG), a vaccine used in many parts of the world to prevent tuberculosis. BCG produces low-grade, chronic inflammation in mice, which can be detected by measuring levels of certain immune system proteins, called inflammatory cytokines, in the blood and brain.

Mice exposed to BCG display the normal symptoms of illness (lack of appetite, reduced activity), but after these symptoms fade the mice continue to exhibit depressive-like behaviors that can be reversed with antidepressants, said animal sciences and pathology professors Keith Kelley and Robert Dantzer, who led the study.

Even after they recover from their sickness, the BCG-infected mice are much more passive than non-infected mice when in an inescapable situation. When placed in a bucket of water for a few minutes, for example, they struggle less to escape and spend more time floating passively, the researchers report.

“The mice that we’re calling depressed give up more quickly. While physically able, the mice quit trying to escape,” said animal sciences professor Jason O’Connor, first author on the study.

“But if you give them anti-depressants, the depressive-like behavior goes away,” Kelley said.

“So the next question is, how can this be?” Dantzer said. “What is the biological molecular switch which makes them go from sickness to depression?”

The researchers knew that infection causes immune cells to produce cytokines, signaling proteins that help the body fight infection. These proteins also activate IDO in the body and brain. IDO degrades the amino acid tryptophan, producing metabolites that affect animal and human behavior. Previous studies have found a strong correlation between an increase in these metabolites and the depressive symptoms seen in some patients.

An analysis of gene regulation in the mouse brains showed that exposure to BCG increased expression of IDO and two cytokines known to induce IDO: tumor necrosis factor-alpha and interferon-gamma.

Because IDO degrades tryptophan, which is the precursor of serotonin, a brain chemical known to positively influence mood, scientists have hypothesized that the depression seen in patients with inflammatory disease was due to a decrease in serotonin in the brain. But a check of serotonin in the brains of mice with depressive-like behavior showed otherwise, Dantzer said.

“The brain is able to compensate for the decrease in tryptophan,” he said.

To test whether IDO was essential to the depressive-like behaviors seen in mice, the researchers gave mice a drug that inhibits IDO and ran the experiment again. Just as before, the mice exposed to BCG exhibited typical sickness behavior (low appetite, reduced activity), from which they soon recovered. But pretreatment with the IDO inhibitor eliminated the subsequent development of depressive-like behavior. Mice that had the IDO gene deleted were also completely resistant to the depressive-like behavior seen in normal mice exposed to BCG.

“This is the first study to directly implicate IDO in depression related to chronic inflammation,” Kelley said.

The researchers suspect that the metabolites produced when IDO degrades tryptophan are in some way promoting depression. More research will establish if that is true, they said.

In the meantime, the study highlights IDO as a potential target for development of new antidepressant drugs.

The study also demonstrates the robust link between the immune system and the nervous system, a connection often ignored by immunologists and neurologists, Kelley said.

To reduce this barrier between the two fields of study, Kelley and Dantzer launched the Integrative Immunology and Behavior program at Illinois. It supports interdisciplinary research on how inflammatory processes in the immune system and brain influence behavior and mental health.

“For years, no one considered that an infection somewhere in the body could affect the brain,” Kelley said. “But as (University of Texas immunologist) Ed Blalock said in 1984, the immune system is a sensory organ. The immune system is exquisitely adapted as a sensory system to ‘see’ infectious agents. And it communicates that information to the brain.”

The NIH National Institute on Aging and the National Institute of Mental Health provided funding for this research.

Editor’s note: To reach Keith Kelley, call: 217-333-5141;
e-mail: kwkelley@illinois.edu
To reach Robert Dantzer, call: 217-244-4075;
email: dantzer@illinois.edu

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu
http://news.illinois.edu/news/09/0331switch.html

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>