Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team Identifies A Molecular Switch Linking Infectious Disease And Depression

01.04.2009
Researchers at the University of Illinois report that IDO, an enzyme found throughout the body and long suspected of playing a role in depression, is in fact essential to the onset of depressive symptoms sparked by chronic inflammation.

Their study, just published in the journal of Immunology, is the first to identify IDO (indoleamine 2,3 dioxygenase) as a molecular switch that induces depressive symptoms in some cases of chronic inflammation.

Doctors have known for decades that patients with chronic inflammation, such as that linked to coronary heart disease or rheumatoid arthritis, are more likely than others to become depressed. Some pro-inflammatory drugs, such as interferon-alpha, which is used to treat Hepatitis C and a cancer known as malignant melanoma, also induce symptoms of depression in a significant number of patients.

In the new study, mice were exposed to Bacille Calmette–Guérin (BCG), a vaccine used in many parts of the world to prevent tuberculosis. BCG produces low-grade, chronic inflammation in mice, which can be detected by measuring levels of certain immune system proteins, called inflammatory cytokines, in the blood and brain.

Mice exposed to BCG display the normal symptoms of illness (lack of appetite, reduced activity), but after these symptoms fade the mice continue to exhibit depressive-like behaviors that can be reversed with antidepressants, said animal sciences and pathology professors Keith Kelley and Robert Dantzer, who led the study.

Even after they recover from their sickness, the BCG-infected mice are much more passive than non-infected mice when in an inescapable situation. When placed in a bucket of water for a few minutes, for example, they struggle less to escape and spend more time floating passively, the researchers report.

“The mice that we’re calling depressed give up more quickly. While physically able, the mice quit trying to escape,” said animal sciences professor Jason O’Connor, first author on the study.

“But if you give them anti-depressants, the depressive-like behavior goes away,” Kelley said.

“So the next question is, how can this be?” Dantzer said. “What is the biological molecular switch which makes them go from sickness to depression?”

The researchers knew that infection causes immune cells to produce cytokines, signaling proteins that help the body fight infection. These proteins also activate IDO in the body and brain. IDO degrades the amino acid tryptophan, producing metabolites that affect animal and human behavior. Previous studies have found a strong correlation between an increase in these metabolites and the depressive symptoms seen in some patients.

An analysis of gene regulation in the mouse brains showed that exposure to BCG increased expression of IDO and two cytokines known to induce IDO: tumor necrosis factor-alpha and interferon-gamma.

Because IDO degrades tryptophan, which is the precursor of serotonin, a brain chemical known to positively influence mood, scientists have hypothesized that the depression seen in patients with inflammatory disease was due to a decrease in serotonin in the brain. But a check of serotonin in the brains of mice with depressive-like behavior showed otherwise, Dantzer said.

“The brain is able to compensate for the decrease in tryptophan,” he said.

To test whether IDO was essential to the depressive-like behaviors seen in mice, the researchers gave mice a drug that inhibits IDO and ran the experiment again. Just as before, the mice exposed to BCG exhibited typical sickness behavior (low appetite, reduced activity), from which they soon recovered. But pretreatment with the IDO inhibitor eliminated the subsequent development of depressive-like behavior. Mice that had the IDO gene deleted were also completely resistant to the depressive-like behavior seen in normal mice exposed to BCG.

“This is the first study to directly implicate IDO in depression related to chronic inflammation,” Kelley said.

The researchers suspect that the metabolites produced when IDO degrades tryptophan are in some way promoting depression. More research will establish if that is true, they said.

In the meantime, the study highlights IDO as a potential target for development of new antidepressant drugs.

The study also demonstrates the robust link between the immune system and the nervous system, a connection often ignored by immunologists and neurologists, Kelley said.

To reduce this barrier between the two fields of study, Kelley and Dantzer launched the Integrative Immunology and Behavior program at Illinois. It supports interdisciplinary research on how inflammatory processes in the immune system and brain influence behavior and mental health.

“For years, no one considered that an infection somewhere in the body could affect the brain,” Kelley said. “But as (University of Texas immunologist) Ed Blalock said in 1984, the immune system is a sensory organ. The immune system is exquisitely adapted as a sensory system to ‘see’ infectious agents. And it communicates that information to the brain.”

The NIH National Institute on Aging and the National Institute of Mental Health provided funding for this research.

Editor’s note: To reach Keith Kelley, call: 217-333-5141;
e-mail: kwkelley@illinois.edu
To reach Robert Dantzer, call: 217-244-4075;
email: dantzer@illinois.edu

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu
http://news.illinois.edu/news/09/0331switch.html

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>