Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team finds promising new drug target for Alzheimer's disease

21.04.2010
Researchers at the University of Illinois have identified a potential drug target for the treatment of Alzheimer’s disease: a receptor that is embedded in the membrane of neurons and other cells.

The beta-2 adrenergic receptor (green) spans the cell membrane (orange and blue). In this visualization, a binding pocket in the receptor interacts with a beta-blocker (red, gray and blue molecule near the center).

The new study found that amyloid-beta, a protein fragment linked to the detrimental effects of Alzheimer's disease, binds to a different region on the beta-2 adrenergic receptor. | Public domain image; more information.

A protein fragment associated with Alzheimer’s disease activates this receptor, sparking increased activity in the affected neurons, eventually leading to cell death, the researchers report. The new findings appear in the FASEB Journal.

Scientists have known for decades that a protein fragment, called amyloid-beta (AM-uh-loyd BAIT-uh), is a key to the riddle of Alzheimer’s disease. Alois Alzheimer himself first found aggregates of this “peculiar substance” in the brain of a dementia patient after her death. These bundles of protein, or plaques, are composed almost entirely of amyloid-beta, and still are used to diagnose Alzheimer’s disease after death.

Animals with amyloid plaques in the brain experience a decline in brain function that mirrors that of Alzheimer’s disease. A recent study found that neurons closest to these plaques tend to be hyperexcitable relative to normal, while activity in the surrounding neurons is depressed, indicating an imbalance in brain activity associated with these plaques.

Other studies have found that clumps of only two, or a few, amyloid-beta fragments somehow stimulate a receptor, called the AMPA receptor. When amyloid-beta binds to a neuron, the AMPA receptor opens a channel that lets calcium or sodium ions into the cell.

Normally the AMPA receptor opens this channel only when it binds to glutamate, a potent neurotransmitter that is important to normal brain function as well as memory and learning. In either case, the quick influx of ions causes a nerve impulse.

To date, scientists have not been able to identify a mechanism by which amyloid-beta causes the AMPA receptor channel to open, however.

“If a mouse is exposed to amyloid-beta in the brain, it impairs neuron function, causing memory deficits and behavioral deficits,” said Kevin Xiang, a professor of molecular and integrative physiology at Illinois who led the new study with professor Charles Cox and postdoctoral fellows Dayong Wang and Govindaiah in the same department. “The question is how this peptide causes all these detrimental cellular effects.”

For the new study, the researchers focused on the beta-2 adrenergic receptor, a protein that – like the AMPA receptor – resides in the cell membrane. Neurotransmitters and hormones normally activate the beta-2 adrenergic receptor, but amyloid-beta also induces a cascade of events in the neuron by activating the beta-2 adrenergic receptor, the researchers found. One of the downstream effects of this interaction is activation of the AMPA receptor ion channels. (In mice lacking the beta-2 adrenergic receptor, amyloid-beta had no discernible effect on AMPA receptors, they found.)

“We showed that we needed the presence of beta-2 adrenergic receptors to get the increase in the AMPA-mediated response,” Cox said.

Further experiments showed that amyloid-beta does bind to the beta-2 adrenergic receptor.

Previous studies had found that blocking the AMPA receptor could alleviate the misfiring caused by amyloid plaques in the brain. But the AMPA receptor, which responds to glutamate, is important to learning and memory, so blocking it could also do harm, the researchers said.

“Glutamate is such a ubiquitous neurotransmitter throughout the brain, you can’t simply go in and block its actions because if you do, you can just start rounding up the side effects,” Cox said.

“Once you block the AMPA receptor you’re basically dampening widespread neuronal excitability throughout the whole brain,” Cox said. “Now we have something a bit more specific to latch onto: the beta-2 adrenergic receptor.”

This receptor offers an attractive alternative target because, the researchers found, amyloid-beta binds to a different part of the receptor than that normally engaged by neurotransmitters and hormones. This means it may be possible to stop amyloid-beta from binding to it without hindering the other functions of the beta-2 adrenergic receptor.

Previous studies have shown that Alzheimer’s patients who also take beta-blockers tend to see a slower decline in their mental function. These drugs are meant to treat hypertension and other conditions by targeting beta-adrenergic receptors, including beta-2. This finding provides further support to the idea that the beta-2 adrenergic receptor is a key to the ill effects of Alzheimer’s disease.

Xiang and Cox stress that the beta-2 adrenergic receptor is almost certainly not the only important player in the damage that occurs in an Alzheimer’s-afflicted brain. But they see it as a promising new potential target for future drug research.

Xiang and Cox are also professors in the Neuroscience Program. Cox is the head of the Department of Pharmacology in the College of Medicine, and a full-time member of the Beckman Institute and of the Center for Biophysics and Computational Biology at Illinois.

Partial funding for this study was provided by the National Institutes of Health.

Diana Yates | EurekAlert!
Further information:
http://www.illinois.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>