Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team finds promising new drug target for Alzheimer's disease

21.04.2010
Researchers at the University of Illinois have identified a potential drug target for the treatment of Alzheimer’s disease: a receptor that is embedded in the membrane of neurons and other cells.

The beta-2 adrenergic receptor (green) spans the cell membrane (orange and blue). In this visualization, a binding pocket in the receptor interacts with a beta-blocker (red, gray and blue molecule near the center).

The new study found that amyloid-beta, a protein fragment linked to the detrimental effects of Alzheimer's disease, binds to a different region on the beta-2 adrenergic receptor. | Public domain image; more information.

A protein fragment associated with Alzheimer’s disease activates this receptor, sparking increased activity in the affected neurons, eventually leading to cell death, the researchers report. The new findings appear in the FASEB Journal.

Scientists have known for decades that a protein fragment, called amyloid-beta (AM-uh-loyd BAIT-uh), is a key to the riddle of Alzheimer’s disease. Alois Alzheimer himself first found aggregates of this “peculiar substance” in the brain of a dementia patient after her death. These bundles of protein, or plaques, are composed almost entirely of amyloid-beta, and still are used to diagnose Alzheimer’s disease after death.

Animals with amyloid plaques in the brain experience a decline in brain function that mirrors that of Alzheimer’s disease. A recent study found that neurons closest to these plaques tend to be hyperexcitable relative to normal, while activity in the surrounding neurons is depressed, indicating an imbalance in brain activity associated with these plaques.

Other studies have found that clumps of only two, or a few, amyloid-beta fragments somehow stimulate a receptor, called the AMPA receptor. When amyloid-beta binds to a neuron, the AMPA receptor opens a channel that lets calcium or sodium ions into the cell.

Normally the AMPA receptor opens this channel only when it binds to glutamate, a potent neurotransmitter that is important to normal brain function as well as memory and learning. In either case, the quick influx of ions causes a nerve impulse.

To date, scientists have not been able to identify a mechanism by which amyloid-beta causes the AMPA receptor channel to open, however.

“If a mouse is exposed to amyloid-beta in the brain, it impairs neuron function, causing memory deficits and behavioral deficits,” said Kevin Xiang, a professor of molecular and integrative physiology at Illinois who led the new study with professor Charles Cox and postdoctoral fellows Dayong Wang and Govindaiah in the same department. “The question is how this peptide causes all these detrimental cellular effects.”

For the new study, the researchers focused on the beta-2 adrenergic receptor, a protein that – like the AMPA receptor – resides in the cell membrane. Neurotransmitters and hormones normally activate the beta-2 adrenergic receptor, but amyloid-beta also induces a cascade of events in the neuron by activating the beta-2 adrenergic receptor, the researchers found. One of the downstream effects of this interaction is activation of the AMPA receptor ion channels. (In mice lacking the beta-2 adrenergic receptor, amyloid-beta had no discernible effect on AMPA receptors, they found.)

“We showed that we needed the presence of beta-2 adrenergic receptors to get the increase in the AMPA-mediated response,” Cox said.

Further experiments showed that amyloid-beta does bind to the beta-2 adrenergic receptor.

Previous studies had found that blocking the AMPA receptor could alleviate the misfiring caused by amyloid plaques in the brain. But the AMPA receptor, which responds to glutamate, is important to learning and memory, so blocking it could also do harm, the researchers said.

“Glutamate is such a ubiquitous neurotransmitter throughout the brain, you can’t simply go in and block its actions because if you do, you can just start rounding up the side effects,” Cox said.

“Once you block the AMPA receptor you’re basically dampening widespread neuronal excitability throughout the whole brain,” Cox said. “Now we have something a bit more specific to latch onto: the beta-2 adrenergic receptor.”

This receptor offers an attractive alternative target because, the researchers found, amyloid-beta binds to a different part of the receptor than that normally engaged by neurotransmitters and hormones. This means it may be possible to stop amyloid-beta from binding to it without hindering the other functions of the beta-2 adrenergic receptor.

Previous studies have shown that Alzheimer’s patients who also take beta-blockers tend to see a slower decline in their mental function. These drugs are meant to treat hypertension and other conditions by targeting beta-adrenergic receptors, including beta-2. This finding provides further support to the idea that the beta-2 adrenergic receptor is a key to the ill effects of Alzheimer’s disease.

Xiang and Cox stress that the beta-2 adrenergic receptor is almost certainly not the only important player in the damage that occurs in an Alzheimer’s-afflicted brain. But they see it as a promising new potential target for future drug research.

Xiang and Cox are also professors in the Neuroscience Program. Cox is the head of the Department of Pharmacology in the College of Medicine, and a full-time member of the Beckman Institute and of the Center for Biophysics and Computational Biology at Illinois.

Partial funding for this study was provided by the National Institutes of Health.

Diana Yates | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>