Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team Finds A Better Way To Watch Bacteria Swim

05.10.2009
Researchers have developed a new method for studying bacterial swimming, one that allows them to trap Escherichia coli bacteria and modify the microbes’ environment without hindering the way they move.

The new approach, described this month in Nature Methods, uses optical traps, microfluidic chambers and fluorescence to get an improved picture of how E. coli get around.

The microfluidic chambers provide a controlled environment in which the bacteria swim, and allow the researchers to introduce specific stimuli – such as chemical attractants – to see if the microbes change direction in response to that stimulus.

Optical traps use lasers to confine individual cells without impeding their rotation or the movement of their flagella. University of Illinois physics professor Yann Chemla, who co-led the study with physics professor Ido Golding, calls the optical traps “bacterial treadmills.” Movement of the bacterial cell alters the light from the laser, allowing the researchers to track its behavior.

Fluorescent markers enhance visualization of the bacteria and their flagella under a microscope.

Three to six helical flagella emerge from various points along E. coli’s rod-shaped body.

When they rotate in a counterclockwise fashion (as seen from behind), they gather into what looks like a coordinated bundle that pushes the bacterium forward, causing it to corkscrew through its environment. But when one or more flagella rotate in the opposite direction, they splay apart, reorienting the bacterium.

This “run and tumble” behavior has long been of interest to scientists for two reasons, Golding said. First, the elaborate mechanics of bacterial swimming “tell you a lot about biomechanics,” he said. And second, “it serves as a paradigm for the way living cells process information from their environment.”

Earlier studies have been unable to follow individual bacterial cells moving in three dimensions for more than about 30 seconds, the researchers said. And it is nearly impossible to determine what cues are spurring a cell to move in a given direction. The new method addresses both of these problems without altering the normal behavior of the bacterium, they found.

“Because the cell is immobilized, what we do is change the environment around it,” Chemla said. “We can set up a flow cell that has two different concentrations of some chemical, for example, and see how the bacterium responds. Technically we’re moving the swimming pool relative to the swimmer,” he said.

The new approach allows the researchers to track a single bacterium as it swims for up to an hour, “which is orders of magnitude above what people could do before,” Golding said. This will offer a new look at questions that so far have been unanswerable, he said.

“For example, some people have asked whether E. coli has a nose. Does it have a front and back?” Golding said. The team’s observations indicate that while the bacterium can travel in either direction, most E. coli have “a pronounced preference” for one over the other, he said.

The researchers found that after most tumbles, a bacterium usually continued swimming in the same general direction, but that about one in six tumbles caused it to change direction completely. They were also able to quantify other features of bacterial swimming, such as changes in velocity and the time spent running and tumbling. The new technique will allow researchers to address many more questions about this model organism, they said.

“That’s the typical way biology moves forward,” Golding said. “You develop a new measurement capability and then you can use that to go back and look at fundamental questions that people had been looking at but had no way of answering.”

The study is a project of the National Science Foundation’s Center for the Physics of Living Cells at the University of Illinois, which promotes collaboration across disciplines, the researchers said.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>