Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Team Finds A Better Way To Watch Bacteria Swim

Researchers have developed a new method for studying bacterial swimming, one that allows them to trap Escherichia coli bacteria and modify the microbes’ environment without hindering the way they move.

The new approach, described this month in Nature Methods, uses optical traps, microfluidic chambers and fluorescence to get an improved picture of how E. coli get around.

The microfluidic chambers provide a controlled environment in which the bacteria swim, and allow the researchers to introduce specific stimuli – such as chemical attractants – to see if the microbes change direction in response to that stimulus.

Optical traps use lasers to confine individual cells without impeding their rotation or the movement of their flagella. University of Illinois physics professor Yann Chemla, who co-led the study with physics professor Ido Golding, calls the optical traps “bacterial treadmills.” Movement of the bacterial cell alters the light from the laser, allowing the researchers to track its behavior.

Fluorescent markers enhance visualization of the bacteria and their flagella under a microscope.

Three to six helical flagella emerge from various points along E. coli’s rod-shaped body.

When they rotate in a counterclockwise fashion (as seen from behind), they gather into what looks like a coordinated bundle that pushes the bacterium forward, causing it to corkscrew through its environment. But when one or more flagella rotate in the opposite direction, they splay apart, reorienting the bacterium.

This “run and tumble” behavior has long been of interest to scientists for two reasons, Golding said. First, the elaborate mechanics of bacterial swimming “tell you a lot about biomechanics,” he said. And second, “it serves as a paradigm for the way living cells process information from their environment.”

Earlier studies have been unable to follow individual bacterial cells moving in three dimensions for more than about 30 seconds, the researchers said. And it is nearly impossible to determine what cues are spurring a cell to move in a given direction. The new method addresses both of these problems without altering the normal behavior of the bacterium, they found.

“Because the cell is immobilized, what we do is change the environment around it,” Chemla said. “We can set up a flow cell that has two different concentrations of some chemical, for example, and see how the bacterium responds. Technically we’re moving the swimming pool relative to the swimmer,” he said.

The new approach allows the researchers to track a single bacterium as it swims for up to an hour, “which is orders of magnitude above what people could do before,” Golding said. This will offer a new look at questions that so far have been unanswerable, he said.

“For example, some people have asked whether E. coli has a nose. Does it have a front and back?” Golding said. The team’s observations indicate that while the bacterium can travel in either direction, most E. coli have “a pronounced preference” for one over the other, he said.

The researchers found that after most tumbles, a bacterium usually continued swimming in the same general direction, but that about one in six tumbles caused it to change direction completely. They were also able to quantify other features of bacterial swimming, such as changes in velocity and the time spent running and tumbling. The new technique will allow researchers to address many more questions about this model organism, they said.

“That’s the typical way biology moves forward,” Golding said. “You develop a new measurement capability and then you can use that to go back and look at fundamental questions that people had been looking at but had no way of answering.”

The study is a project of the National Science Foundation’s Center for the Physics of Living Cells at the University of Illinois, which promotes collaboration across disciplines, the researchers said.

Diana Yates | University of Illinois
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>