Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team discovers how microbes build a powerful antibiotic

27.10.2014

Researchers report in the journal Nature that they have made a breakthrough in understanding how a powerful antibiotic agent is made in nature. Their discovery solves a decades-old mystery, and opens up new avenues of research into thousands of similar molecules, many of which are likely to be medically useful.

The team focused on a class of compounds that includes dozens with antibiotic properties. The most famous of these is nisin, a natural product in milk that can be synthesized in the lab and is added to foods as a preservative. Nisin has been used to combat food-borne pathogens since the late 1960s.


University of Illinois graduate research assistant Manuel A. Ortega, chemistry professor Wilfred van der Donk, graduate student Yue Hao, biochemistry professor Satish Nair and postdoctoral researcher Mark Walker solved a decades-old mystery into how a broad class of natural antibiotics are made.

Credit: L. Brian Stauffer

Researchers have long known the sequence of the nisin gene, and they can assemble the chain of amino acids (called a peptide) that are encoded by this gene. But the peptide undergoes several modifications in the cell after it is made, changes that give it its final form and function. Researchers have tried for more than 25 years to understand how these changes occur.

"Peptides are a little bit like spaghetti; they're too flexible to do their jobs," said University of Illinois chemistry professor Wilfred van der Donk, who led the research with biochemistry professor Satish K. Nair. "So what nature does is it starts putting knobs in, or starts making the peptide cyclical."

Special enzymes do this work. For nisin, an enzyme called a dehydratase removes water to help give the antibiotic its final, three-dimensional shape. This is the first step in converting the spaghetti-like peptide into a five-ringed structure, van der Donk said.

The rings are essential to nisin's antibiotic function: Two of them disrupt the construction of bacterial cell walls, while the other three punch holes in bacterial membranes. This dual action is especially effective, making it much more difficult for microbes to evolve resistance to the antibiotic.

Previous studies showed that the dehydratase was involved in making these modifications, but researchers have been unable to determine how it did so. This lack of insight has prevented the discovery, production and study of dozens of similar compounds that also could be useful in fighting food-borne diseases or dangerous microbial infections, van der Donk said.

Through a painstaking process of elimination, Manuel Ortega, a graduate student in van der Donk's lab, established that the amino acid glutamate was essential to nisin's transformation.

"They discovered that the dehydratase did two things," Nair said. "One is that it added glutamate (to the nisin peptide), and the second thing it did was it eliminated glutamate. But how does one enzyme have two different activities?"

To help answer this question, Yue Hao, a graduate student in Nair's lab, used X-ray crystallography to visualize how the dehydratase bound to the nisin peptide. She found that the enzyme interacted with the peptide in two ways: It grasped one part of the peptide and held it fast, while a different part of the dehydratase helped install the ring structures.

"There's a part of the nisin precursor peptide that is held steady, and there's a part that is flexible. And the flexible part is actually where the chemistry is carried out," Nair said.

Ortega also made another a surprising discovery: transfer-RNA, a molecule best known for its role in protein production, supplies the glutamate that allows the dehydratase to help shape the nisin into its final, active form.

"In this study, we solve a lot of questions that people have had about how dehydration works on a chemical level," van der Donk said. "And it turns out that in nature a fairly large number of natural products – many of them with therapeutic potential – are made in a similar fashion. This really is like turning on a light where it was dark before, and now we and other labs can do all kinds of things that we couldn't do previously."

###

Van der Donk is a Howard Hughes Medical Institute investigator. He and Nair also are faculty in the Institute for Genomic Biology at Illinois.

The National Institute of General Medical Sciences at the National Institutes of Health and the Ford Foundation supported this work.

To reach Satish Nair, call 217-333-0641; email snair@illinois.edu.

To reach Wilfred van der Donk, call 217-244-5360; email vddonk@illinois.edu.

The paper, "Structure and mechanism of the tRNA-dependent lantibiotic dehydratase NisB," is available online or to members of the media from the U. of I. News Bureau.

Diana Yates | Eurek Alert!
Further information:
http://illinois.edu/

Further reports about: Ortega amino amino acid glutamate antibiotic bacterial compounds enzyme glutamate microbes modifications

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>