Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team Develops New Method for Producing Proteins Critical to Medical Research

01.04.2010
Scientists at the University of Delaware have developed a new method for producing proteins critical to research on cancer, Alzheimer's, and other diseases.

Developed by Zhihao Zhuang, UD assistant professor of chemistry and biochemistry, and his research group, the chemical method yields hundredsfold more ubiquitylated proteins than current approaches. Such proteins may hold the key to revealing such mysteries as how cancer cells gain resistance to cancer drugs.

The advance is reported in the April issue of Nature Chemical Biology, the leading journal in the field of chemical biology. Zhuang's co-authors include graduate students Junjun Chen and Jialiang Wang and postdoctoral fellow Yongxing Ai, all from UD, and Lajos Haracska, a researcher in the Institute of Genetics at the Hungarian Academy of Sciences.

Ubiquitin is a small protein, the basis of Nobel Prize-winning research in 2004, which deemed the molecule the “kiss of death” for its role in tagging damaged or unneeded proteins for the cell's waste disposal in the constant process of protein generation and degradation. In recent years, the non-proteolytic functions of ubiquitin in diverse cellular processes, including protein trafficking, immune response, and DNA damage tolerance, have been discovered at a rapid pace, and it has become clear that ubiquitin plays far-broader roles in cell biology.

However, preparing sufficient samples of ubiquitylated proteins for study has been a major challenge facing scientists.

The availability of these proteins is critical for Zhuang and members of his research team, who are working at the interface of chemistry and biology trying to understand the molecular basis of human cancer development and prevention.

The new method for developing ubiquitylated proteins, which Zhuang and his team developed, combines the power of intein chemistry and disulfide crosslinking to bond ubiquitin to another essential protein called proliferating cell nuclear antigen.

“Our yield is hundredsfold higher compared to the commonly used enzymatic approach,” Zhuang says. “We also have the flexibility of modifying the selected residues, which has not been possible with the previous approach.”

In investigating the effect of the differently modified proteins, Zhuang and his group also revealed a surprising phenomenon regarding ubiquitylation.

“We found that ubiquitin as a protein modifier is far more flexible than we have thought. This property distinguishes ubiquitylation from other better studied protein post-translational modifications, such as phosphorylation and acetylation,” Zhuang says.

The new UD approach will help researchers studying ubiquitin biology by providing the means to prepare milligrams of protein samples for in-depth structural and functional characterization.

SInce the publication of the work online in Nature Chemical Biology, Zhuang has received requests for samples from research groups across the United States.

Additionally, the new approach has already opened up doors to new research in Zhuang's own laboratory, where he and his team are investigating new anti-cancer therapies.

The research on the new method was supported by Zhuang's laboratory start-up funding from UD, as well as a recent grant from the University of Delaware Research Foundation (UDRF).

Tracey Bryant | Newswise Science News
Further information:
http://www.udel.edu

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>