Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Team Develops New Method for Producing Proteins Critical to Medical Research

Scientists at the University of Delaware have developed a new method for producing proteins critical to research on cancer, Alzheimer's, and other diseases.

Developed by Zhihao Zhuang, UD assistant professor of chemistry and biochemistry, and his research group, the chemical method yields hundredsfold more ubiquitylated proteins than current approaches. Such proteins may hold the key to revealing such mysteries as how cancer cells gain resistance to cancer drugs.

The advance is reported in the April issue of Nature Chemical Biology, the leading journal in the field of chemical biology. Zhuang's co-authors include graduate students Junjun Chen and Jialiang Wang and postdoctoral fellow Yongxing Ai, all from UD, and Lajos Haracska, a researcher in the Institute of Genetics at the Hungarian Academy of Sciences.

Ubiquitin is a small protein, the basis of Nobel Prize-winning research in 2004, which deemed the molecule the “kiss of death” for its role in tagging damaged or unneeded proteins for the cell's waste disposal in the constant process of protein generation and degradation. In recent years, the non-proteolytic functions of ubiquitin in diverse cellular processes, including protein trafficking, immune response, and DNA damage tolerance, have been discovered at a rapid pace, and it has become clear that ubiquitin plays far-broader roles in cell biology.

However, preparing sufficient samples of ubiquitylated proteins for study has been a major challenge facing scientists.

The availability of these proteins is critical for Zhuang and members of his research team, who are working at the interface of chemistry and biology trying to understand the molecular basis of human cancer development and prevention.

The new method for developing ubiquitylated proteins, which Zhuang and his team developed, combines the power of intein chemistry and disulfide crosslinking to bond ubiquitin to another essential protein called proliferating cell nuclear antigen.

“Our yield is hundredsfold higher compared to the commonly used enzymatic approach,” Zhuang says. “We also have the flexibility of modifying the selected residues, which has not been possible with the previous approach.”

In investigating the effect of the differently modified proteins, Zhuang and his group also revealed a surprising phenomenon regarding ubiquitylation.

“We found that ubiquitin as a protein modifier is far more flexible than we have thought. This property distinguishes ubiquitylation from other better studied protein post-translational modifications, such as phosphorylation and acetylation,” Zhuang says.

The new UD approach will help researchers studying ubiquitin biology by providing the means to prepare milligrams of protein samples for in-depth structural and functional characterization.

SInce the publication of the work online in Nature Chemical Biology, Zhuang has received requests for samples from research groups across the United States.

Additionally, the new approach has already opened up doors to new research in Zhuang's own laboratory, where he and his team are investigating new anti-cancer therapies.

The research on the new method was supported by Zhuang's laboratory start-up funding from UD, as well as a recent grant from the University of Delaware Research Foundation (UDRF).

Tracey Bryant | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>