Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team Develops New Method for Producing Proteins Critical to Medical Research

01.04.2010
Scientists at the University of Delaware have developed a new method for producing proteins critical to research on cancer, Alzheimer's, and other diseases.

Developed by Zhihao Zhuang, UD assistant professor of chemistry and biochemistry, and his research group, the chemical method yields hundredsfold more ubiquitylated proteins than current approaches. Such proteins may hold the key to revealing such mysteries as how cancer cells gain resistance to cancer drugs.

The advance is reported in the April issue of Nature Chemical Biology, the leading journal in the field of chemical biology. Zhuang's co-authors include graduate students Junjun Chen and Jialiang Wang and postdoctoral fellow Yongxing Ai, all from UD, and Lajos Haracska, a researcher in the Institute of Genetics at the Hungarian Academy of Sciences.

Ubiquitin is a small protein, the basis of Nobel Prize-winning research in 2004, which deemed the molecule the “kiss of death” for its role in tagging damaged or unneeded proteins for the cell's waste disposal in the constant process of protein generation and degradation. In recent years, the non-proteolytic functions of ubiquitin in diverse cellular processes, including protein trafficking, immune response, and DNA damage tolerance, have been discovered at a rapid pace, and it has become clear that ubiquitin plays far-broader roles in cell biology.

However, preparing sufficient samples of ubiquitylated proteins for study has been a major challenge facing scientists.

The availability of these proteins is critical for Zhuang and members of his research team, who are working at the interface of chemistry and biology trying to understand the molecular basis of human cancer development and prevention.

The new method for developing ubiquitylated proteins, which Zhuang and his team developed, combines the power of intein chemistry and disulfide crosslinking to bond ubiquitin to another essential protein called proliferating cell nuclear antigen.

“Our yield is hundredsfold higher compared to the commonly used enzymatic approach,” Zhuang says. “We also have the flexibility of modifying the selected residues, which has not been possible with the previous approach.”

In investigating the effect of the differently modified proteins, Zhuang and his group also revealed a surprising phenomenon regarding ubiquitylation.

“We found that ubiquitin as a protein modifier is far more flexible than we have thought. This property distinguishes ubiquitylation from other better studied protein post-translational modifications, such as phosphorylation and acetylation,” Zhuang says.

The new UD approach will help researchers studying ubiquitin biology by providing the means to prepare milligrams of protein samples for in-depth structural and functional characterization.

SInce the publication of the work online in Nature Chemical Biology, Zhuang has received requests for samples from research groups across the United States.

Additionally, the new approach has already opened up doors to new research in Zhuang's own laboratory, where he and his team are investigating new anti-cancer therapies.

The research on the new method was supported by Zhuang's laboratory start-up funding from UD, as well as a recent grant from the University of Delaware Research Foundation (UDRF).

Tracey Bryant | Newswise Science News
Further information:
http://www.udel.edu

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>