Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team of chemists produces biodiesel at their university, using used cooking oil as a basis

18.10.2010
The cafeterias at the Catering School on the Leioa campus of the University of the Basque Country (UPV/EHU) use litres upon litres of oil for cooking, given that many students, research workers, lecturers and ancillary staff eat there.

Currently a truck takes away all the waste. However, a number of Chemistry Faculty lecturers have demonstrated that this oil can be used and revalued at the university itself, having managed to produce biodiesel from the used oil.

According to lecturer Ms Eneritz Anakabe, "we have shown that it can be done on a small scale, that biodiesel can be obtained from this oil in a simple manner".

This initiative involves three lecturers in Chemistry from the UPV/EHU, one from the School of Engineers in Bilbao and a number of collaborators. Their research project is called Transesterification. Biodiesels, is financed by the UNESCO Catedra for the Sustainable Development and Environmental Education of the UPV/EHU, and is to last for two years – until 2011.

Obviously, to produce large quantities of biodiesel, another type of installation will be required, but what can be produced in the laboratories of the Faculty of Science and Technology is sufficient for the lawn mowers, heating and official cars of the UPV/EHU.

Without greenhouse effect

In order to obtain biodiesel from oil, a transesterification reaction is necessary. The lecturers mentioned have gathered together the literature on various experimental techniques that enable this reaction and have carried out trials until they found the cheapest, most rapid and, in their view, the most appropriate. Not more than an hour is needed to undertake this transformation. Moreover, they have compared their results with commercial biodiesel fuels (taking advantage of the fact that their properties and quantities are known), showing that the product created can be used at the university.

Mr Fernando Mijangos, the person in charge of the project, highlighting the advantages of biodiesel and thereby the product they obtained, compared to diesel fuel, stated, "From the perspective of gases emitted due to the greenhouse effect, these —the biodiesel fuels— are much more profitable than the others and are much cleaner. Diesels are fossil fuels and so induce the greenhouse effect. These fried oils, on the other hand, do not". What is more, if the technique with which they have experimented were to be implemented throughout the university, it would not only result in a zero greenhouse effect, but would also "clean up" the environment: "Instead of dumping the waste down the sink, we offer a cleaner solution. This is its greatest advantage".

Container for oil waste collection

In the months remaining until the project terminates, this group of chemists will focus mainly on two aspects: on the one hand, the optimisation of the product obtained and, on the other, social awareness. As regards the latter, according to Mr Mijangos, the data show that only 3 in every 10 times oil is recycled. The willingness of members of the public, clearly, is indispensable for the raw material collected to be sufficient in order to obtain biodiesel therefrom. The university teachers have taken measures to make the students aware, as Ms Anakabe explains: "We made contact with the Rafrinor company and we placed a container at the entrance —on the right side— of the faculty, in order to collect used oil". It was installed at the beginning of May and will remain there for several months, in order to measure and foment the involvement of the public.

Making people aware is an arduous task. As an example of this, Ms Anakabe refers to her students: "I have 40 students but, to be honest, only ten have committed themselves. This is significant. While the students are more aware, they are still slow in changing – it is "easier" to throw away the oil directly down the sink". Because of this and in order to motivate the students, Mr Mijangos explained that they are undertaking the transesterification reaction —from which we get the biodiesel— jointly with the students. "We are doing two experiments daily, and we are also learning in this way. Moreover, when we finish the project, we hope to write a small booklet with all the experiments and techniques carried out. And then implement them with our students".

Support of UPV/EHU fundamental

In any case, as Mr Mijangos reminds us, "we as researchers are not going to solve this unless there is a commitment from government bodies". Ms Anakabe adds that putting into practice the fruit of these two years of work is in the hands of the people working in the vice-chancellor's office", because government support is essential. "We are scientists and we will continue with our experiments. For example, we will study the treatment to be undertaken (viscosity, density and so on). All this is easy for us. What is not so easy is getting it right in transferring this from laboratory to society", stated Mr Mijangos.

Amaia Portugal | EurekAlert!
Further information:
http://www.elhuyar.com

Further reports about: Biodiesel CHEMISTRY biodiesel fuel cooking oil diesel fuel greenhouse effect

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>