Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Team of chemists produces biodiesel at their university, using used cooking oil as a basis

The cafeterias at the Catering School on the Leioa campus of the University of the Basque Country (UPV/EHU) use litres upon litres of oil for cooking, given that many students, research workers, lecturers and ancillary staff eat there.

Currently a truck takes away all the waste. However, a number of Chemistry Faculty lecturers have demonstrated that this oil can be used and revalued at the university itself, having managed to produce biodiesel from the used oil.

According to lecturer Ms Eneritz Anakabe, "we have shown that it can be done on a small scale, that biodiesel can be obtained from this oil in a simple manner".

This initiative involves three lecturers in Chemistry from the UPV/EHU, one from the School of Engineers in Bilbao and a number of collaborators. Their research project is called Transesterification. Biodiesels, is financed by the UNESCO Catedra for the Sustainable Development and Environmental Education of the UPV/EHU, and is to last for two years – until 2011.

Obviously, to produce large quantities of biodiesel, another type of installation will be required, but what can be produced in the laboratories of the Faculty of Science and Technology is sufficient for the lawn mowers, heating and official cars of the UPV/EHU.

Without greenhouse effect

In order to obtain biodiesel from oil, a transesterification reaction is necessary. The lecturers mentioned have gathered together the literature on various experimental techniques that enable this reaction and have carried out trials until they found the cheapest, most rapid and, in their view, the most appropriate. Not more than an hour is needed to undertake this transformation. Moreover, they have compared their results with commercial biodiesel fuels (taking advantage of the fact that their properties and quantities are known), showing that the product created can be used at the university.

Mr Fernando Mijangos, the person in charge of the project, highlighting the advantages of biodiesel and thereby the product they obtained, compared to diesel fuel, stated, "From the perspective of gases emitted due to the greenhouse effect, these —the biodiesel fuels— are much more profitable than the others and are much cleaner. Diesels are fossil fuels and so induce the greenhouse effect. These fried oils, on the other hand, do not". What is more, if the technique with which they have experimented were to be implemented throughout the university, it would not only result in a zero greenhouse effect, but would also "clean up" the environment: "Instead of dumping the waste down the sink, we offer a cleaner solution. This is its greatest advantage".

Container for oil waste collection

In the months remaining until the project terminates, this group of chemists will focus mainly on two aspects: on the one hand, the optimisation of the product obtained and, on the other, social awareness. As regards the latter, according to Mr Mijangos, the data show that only 3 in every 10 times oil is recycled. The willingness of members of the public, clearly, is indispensable for the raw material collected to be sufficient in order to obtain biodiesel therefrom. The university teachers have taken measures to make the students aware, as Ms Anakabe explains: "We made contact with the Rafrinor company and we placed a container at the entrance —on the right side— of the faculty, in order to collect used oil". It was installed at the beginning of May and will remain there for several months, in order to measure and foment the involvement of the public.

Making people aware is an arduous task. As an example of this, Ms Anakabe refers to her students: "I have 40 students but, to be honest, only ten have committed themselves. This is significant. While the students are more aware, they are still slow in changing – it is "easier" to throw away the oil directly down the sink". Because of this and in order to motivate the students, Mr Mijangos explained that they are undertaking the transesterification reaction —from which we get the biodiesel— jointly with the students. "We are doing two experiments daily, and we are also learning in this way. Moreover, when we finish the project, we hope to write a small booklet with all the experiments and techniques carried out. And then implement them with our students".

Support of UPV/EHU fundamental

In any case, as Mr Mijangos reminds us, "we as researchers are not going to solve this unless there is a commitment from government bodies". Ms Anakabe adds that putting into practice the fruit of these two years of work is in the hands of the people working in the vice-chancellor's office", because government support is essential. "We are scientists and we will continue with our experiments. For example, we will study the treatment to be undertaken (viscosity, density and so on). All this is easy for us. What is not so easy is getting it right in transferring this from laboratory to society", stated Mr Mijangos.

Amaia Portugal | EurekAlert!
Further information:

Further reports about: Biodiesel CHEMISTRY biodiesel fuel cooking oil diesel fuel greenhouse effect

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>