Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team of chemists produces biodiesel at their university, using used cooking oil as a basis

18.10.2010
The cafeterias at the Catering School on the Leioa campus of the University of the Basque Country (UPV/EHU) use litres upon litres of oil for cooking, given that many students, research workers, lecturers and ancillary staff eat there.

Currently a truck takes away all the waste. However, a number of Chemistry Faculty lecturers have demonstrated that this oil can be used and revalued at the university itself, having managed to produce biodiesel from the used oil.

According to lecturer Ms Eneritz Anakabe, "we have shown that it can be done on a small scale, that biodiesel can be obtained from this oil in a simple manner".

This initiative involves three lecturers in Chemistry from the UPV/EHU, one from the School of Engineers in Bilbao and a number of collaborators. Their research project is called Transesterification. Biodiesels, is financed by the UNESCO Catedra for the Sustainable Development and Environmental Education of the UPV/EHU, and is to last for two years – until 2011.

Obviously, to produce large quantities of biodiesel, another type of installation will be required, but what can be produced in the laboratories of the Faculty of Science and Technology is sufficient for the lawn mowers, heating and official cars of the UPV/EHU.

Without greenhouse effect

In order to obtain biodiesel from oil, a transesterification reaction is necessary. The lecturers mentioned have gathered together the literature on various experimental techniques that enable this reaction and have carried out trials until they found the cheapest, most rapid and, in their view, the most appropriate. Not more than an hour is needed to undertake this transformation. Moreover, they have compared their results with commercial biodiesel fuels (taking advantage of the fact that their properties and quantities are known), showing that the product created can be used at the university.

Mr Fernando Mijangos, the person in charge of the project, highlighting the advantages of biodiesel and thereby the product they obtained, compared to diesel fuel, stated, "From the perspective of gases emitted due to the greenhouse effect, these —the biodiesel fuels— are much more profitable than the others and are much cleaner. Diesels are fossil fuels and so induce the greenhouse effect. These fried oils, on the other hand, do not". What is more, if the technique with which they have experimented were to be implemented throughout the university, it would not only result in a zero greenhouse effect, but would also "clean up" the environment: "Instead of dumping the waste down the sink, we offer a cleaner solution. This is its greatest advantage".

Container for oil waste collection

In the months remaining until the project terminates, this group of chemists will focus mainly on two aspects: on the one hand, the optimisation of the product obtained and, on the other, social awareness. As regards the latter, according to Mr Mijangos, the data show that only 3 in every 10 times oil is recycled. The willingness of members of the public, clearly, is indispensable for the raw material collected to be sufficient in order to obtain biodiesel therefrom. The university teachers have taken measures to make the students aware, as Ms Anakabe explains: "We made contact with the Rafrinor company and we placed a container at the entrance —on the right side— of the faculty, in order to collect used oil". It was installed at the beginning of May and will remain there for several months, in order to measure and foment the involvement of the public.

Making people aware is an arduous task. As an example of this, Ms Anakabe refers to her students: "I have 40 students but, to be honest, only ten have committed themselves. This is significant. While the students are more aware, they are still slow in changing – it is "easier" to throw away the oil directly down the sink". Because of this and in order to motivate the students, Mr Mijangos explained that they are undertaking the transesterification reaction —from which we get the biodiesel— jointly with the students. "We are doing two experiments daily, and we are also learning in this way. Moreover, when we finish the project, we hope to write a small booklet with all the experiments and techniques carried out. And then implement them with our students".

Support of UPV/EHU fundamental

In any case, as Mr Mijangos reminds us, "we as researchers are not going to solve this unless there is a commitment from government bodies". Ms Anakabe adds that putting into practice the fruit of these two years of work is in the hands of the people working in the vice-chancellor's office", because government support is essential. "We are scientists and we will continue with our experiments. For example, we will study the treatment to be undertaken (viscosity, density and so on). All this is easy for us. What is not so easy is getting it right in transferring this from laboratory to society", stated Mr Mijangos.

Amaia Portugal | EurekAlert!
Further information:
http://www.elhuyar.com

Further reports about: Biodiesel CHEMISTRY biodiesel fuel cooking oil diesel fuel greenhouse effect

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>