Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TCD scientists discover that self-eating cells safeguard against cancer

28.02.2011
Discovery of killer cells has potential for targeted cancer therapies

Scientists at Trinity College Dublin have made an important discovery concerning how fledgling cancer cells self-destruct, which has the potential of impacting on future cancer therapies. The Trinity research group, led by Smurfit Professor of Medical Genetics, Professor Seamus Martin and funded by Science Foundation Ireland, has just published their findings in the internationally renowned journal, Molecular Cell.

Professor Martin's team has discovered how a process called 'autophagy' – which literally means 'self-eating' – plays an important role in safeguarding against the development of cancer. The discovery highlights an unexpected role for a killer protein, called Noxa, in triggering the self-eating process that leads cells in the early stages of cancer to literally eat themselves to death.

Normally, the process of autophagy is switched on when cells experience periods of starvation and in this context is beneficial by helping to keep the 'wolf from the door' until food reappears on the menu. However, the Martin laboratory has discovered that mutations in a gene called Ras, which is involved in approximately 30% of human cancers, triggers excessive autophagy leading to auto-destruction of the fledgling tumour cell. Mutant Ras was found to switch cells into the self-eating mode by ramping up the production of Noxa. The study suggests that autophagy represents an important natural safeguard against cancer development.

Importantly, the Trinity team also discovered that members of the Bcl-2 gene family could override this process, switching off the self-eating process and leading to survival of cancerous cells. This suggests that drugs targeting Bcl-2 might reactivate the natural self-destruction pathway and help to shrink tumours. The fact that mutant Ras triggers self-destruction of cells carrying this gene also helps to explain why the emergence of fully cancerous cells is relatively rare when we consider that the average human makes hundreds of billions of cells over the course of their lifetime.

Commenting on the findings, Professor Martin stated: "This discovery is an important step forward in our understanding of how cells in the early stages of cancer hit the autodestruct button and suggests new ways in which we may be able to re-activate this process in cancers that do manage to establish. This breakthrough has led directly from investment in research made by the Irish state over the past 10 years through important initiatives such as the establishment of Science Foundation Ireland."

The work was carried out in the Molecular Cell Biology Laboratory at TCD's School of Genetics and Microbiology by the research team led by Professor Martin and funded primarily through a major award from Science Foundation Ireland. The TCD research team is internationally recognised for its work on cell death control in cancer and immunity.

Professor Seamus Martin | EurekAlert!
Further information:
http://www.tcd.ie

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>