Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TB-drugome provides new targets for anti-tuberculosis drug discovery

09.11.2010
Researchers at the University of California, San Diego School of Medicine and the University of Leeds have linked hundreds of federally approved drugs to more than 1,000 proteins in Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), opening new avenues to repurpose these drugs to treat TB.

The study was published Nov. 4 in PLoS Computational Biology.

"Tuberculosis is currently one of the most widely spread infectious diseases, with an estimated one-third of the world's population infected and between one and two million people dying each year from the disease," said Philip Bourne, PhD, professor of pharmacology at UCSD's Skaggs School of Pharmacy and Pharmaceutical Sciences.

"The continuing emergence of M. tuberculosis strains resistant to all existing, affordable drug treatments requires the development of novel, effective and inexpensive drugs.

The newly developed TB-drugome may help that effort, Bourne said, by identifying new M. tuberculosis protein targets that can be perturbed by a variety of existing drugs prescribed for other purposes.

Sarah Kinnings at the University of Leeds and a team of scientists at UC San Diego, led by Bourne (who is also associate director of the RCSB Protein Data Bank) and research scientist Lei Xie, PhD, used a novel computational strategy to investigate whether any existing drugs were able to bind to any of the approximately 40 percent of proteins in the M. tuberculosis proteome with decipherable three-dimensional structures.

The researchers not only discovered that approximately one-third of the drugs examined may have the potential to be repurposed to treat tuberculosis, but also that many currently unexploited M. tuberculosis proteins could serve as novel anti-tubercular targets. This finding led the investigators to construct a complex network of drug-target interactions – a TB-drugome available to all scientists.

While this new computational, high-throughput process of drug discovery is promising, Xie cautioned that "only experimentation can validate the most promising drug-target combinations, and there will be many failures along the way."

Kinnings added that any drugs subsequently confirmed to bind to M. tuberculosis proteins may need to be modified to increase their ability to penetrate the bacterial cell membrane, reduce their required dosage, and improve other pharmacological properties. The screening of a large collection of analogs to known drugs will be the next step towards anti-tuberculosis drug discovery.

Other authors of the study are Richard Jackson of the Institute of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology at University of Leeds; Li Xie of the Skaggs School of Pharmacy and Pharmaceutical Sciences at UC San Diego and Kingston Fung of the UCSD's Bioinformatics Program.

Funding for this project came from the National Institutes of Health.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>