Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TB-drugome provides new targets for anti-tuberculosis drug discovery

09.11.2010
Researchers at the University of California, San Diego School of Medicine and the University of Leeds have linked hundreds of federally approved drugs to more than 1,000 proteins in Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), opening new avenues to repurpose these drugs to treat TB.

The study was published Nov. 4 in PLoS Computational Biology.

"Tuberculosis is currently one of the most widely spread infectious diseases, with an estimated one-third of the world's population infected and between one and two million people dying each year from the disease," said Philip Bourne, PhD, professor of pharmacology at UCSD's Skaggs School of Pharmacy and Pharmaceutical Sciences.

"The continuing emergence of M. tuberculosis strains resistant to all existing, affordable drug treatments requires the development of novel, effective and inexpensive drugs.

The newly developed TB-drugome may help that effort, Bourne said, by identifying new M. tuberculosis protein targets that can be perturbed by a variety of existing drugs prescribed for other purposes.

Sarah Kinnings at the University of Leeds and a team of scientists at UC San Diego, led by Bourne (who is also associate director of the RCSB Protein Data Bank) and research scientist Lei Xie, PhD, used a novel computational strategy to investigate whether any existing drugs were able to bind to any of the approximately 40 percent of proteins in the M. tuberculosis proteome with decipherable three-dimensional structures.

The researchers not only discovered that approximately one-third of the drugs examined may have the potential to be repurposed to treat tuberculosis, but also that many currently unexploited M. tuberculosis proteins could serve as novel anti-tubercular targets. This finding led the investigators to construct a complex network of drug-target interactions – a TB-drugome available to all scientists.

While this new computational, high-throughput process of drug discovery is promising, Xie cautioned that "only experimentation can validate the most promising drug-target combinations, and there will be many failures along the way."

Kinnings added that any drugs subsequently confirmed to bind to M. tuberculosis proteins may need to be modified to increase their ability to penetrate the bacterial cell membrane, reduce their required dosage, and improve other pharmacological properties. The screening of a large collection of analogs to known drugs will be the next step towards anti-tuberculosis drug discovery.

Other authors of the study are Richard Jackson of the Institute of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology at University of Leeds; Li Xie of the Skaggs School of Pharmacy and Pharmaceutical Sciences at UC San Diego and Kingston Fung of the UCSD's Bioinformatics Program.

Funding for this project came from the National Institutes of Health.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>