Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


TB-drugome provides new targets for anti-tuberculosis drug discovery

Researchers at the University of California, San Diego School of Medicine and the University of Leeds have linked hundreds of federally approved drugs to more than 1,000 proteins in Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), opening new avenues to repurpose these drugs to treat TB.

The study was published Nov. 4 in PLoS Computational Biology.

"Tuberculosis is currently one of the most widely spread infectious diseases, with an estimated one-third of the world's population infected and between one and two million people dying each year from the disease," said Philip Bourne, PhD, professor of pharmacology at UCSD's Skaggs School of Pharmacy and Pharmaceutical Sciences.

"The continuing emergence of M. tuberculosis strains resistant to all existing, affordable drug treatments requires the development of novel, effective and inexpensive drugs.

The newly developed TB-drugome may help that effort, Bourne said, by identifying new M. tuberculosis protein targets that can be perturbed by a variety of existing drugs prescribed for other purposes.

Sarah Kinnings at the University of Leeds and a team of scientists at UC San Diego, led by Bourne (who is also associate director of the RCSB Protein Data Bank) and research scientist Lei Xie, PhD, used a novel computational strategy to investigate whether any existing drugs were able to bind to any of the approximately 40 percent of proteins in the M. tuberculosis proteome with decipherable three-dimensional structures.

The researchers not only discovered that approximately one-third of the drugs examined may have the potential to be repurposed to treat tuberculosis, but also that many currently unexploited M. tuberculosis proteins could serve as novel anti-tubercular targets. This finding led the investigators to construct a complex network of drug-target interactions – a TB-drugome available to all scientists.

While this new computational, high-throughput process of drug discovery is promising, Xie cautioned that "only experimentation can validate the most promising drug-target combinations, and there will be many failures along the way."

Kinnings added that any drugs subsequently confirmed to bind to M. tuberculosis proteins may need to be modified to increase their ability to penetrate the bacterial cell membrane, reduce their required dosage, and improve other pharmacological properties. The screening of a large collection of analogs to known drugs will be the next step towards anti-tuberculosis drug discovery.

Other authors of the study are Richard Jackson of the Institute of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology at University of Leeds; Li Xie of the Skaggs School of Pharmacy and Pharmaceutical Sciences at UC San Diego and Kingston Fung of the UCSD's Bioinformatics Program.

Funding for this project came from the National Institutes of Health.

Scott LaFee | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>