Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tarsier genome provides new insights into the evolution of primates

06.10.2016

A team of researchers analyzed the genome of the tarsier and gained new insights into the evolution of primates and jumping genes

A German-American research team has analyzed the genetic makeup of the Philippine tarsier and with that, they have shed new light on the early evolution of primates. The participants of the study were the Institute of Experimental Pathology of the Medical Faculty in Münster, the McDonnell Genome Institute in Washington, the University of California in Santa Cruz, as well as the German Primate Center (DPZ) - Leibniz Institute for Primate Research in Göttingen.


A tarsier (Carlito syrichta) with his prey.

Photo: David Haring/Duke Lemur Center

Through the investigations of specific genomic segments, the so-called jumping genes in the genome of the small forest dwellers, researchers have discovered new elements and their distribution mechanisms. In addition, they are able to explain the activity patterns of various other jumping genes in the course of the primate evolution. Since humans also belong to the order of primates, the researchers were able to draw conclusions on our own development based on the results (Nature Communications 7, 12997).

Dusk in the Philippine rainforest. In the dense branches of a treetop, a somewhat unusual fellow awakens. The roughly fist-sized forest dweller climbs from its tree hole and prepares for the night. With its big eyes, each one bigger than its brain, he takes aim at a grasshopper. He is unable to move his eyes, but thanks to his highly modified cervical vertebra, he has the ability to turn his head 180 degrees in either direction.

With his long, thin fingers the small carni- and insectivore attacks the grasshopper and enjoys it. Its scientific name tarsier (tarsius singular) was given because of his special tarsi feet. The hind legs are strong, and he can take a leap of up to six meters from tree to tree. With a weight of approximately 150 grams, the tarsier is lighter than two bars of chocolate but for research purposes, he is considered a heavyweight because he covers an unknown period of primate evolution.

What can such a strange contemporary tell us about the early evolution of primates? The answer lies hidden in the genome. To find out just what makes these little primates so unique, a German-American research team used modern genetic methods (i.a. high-throughput sequencing) to decipher its genetic material. In the subsequent in-depth analyses of genetic material, special attention was given to so-called jumping genes that can play an important role in the evolution of genes and genomes and thus also for the evolution of primates.

The scientists led by Jürgen Schmitz from the Institute of Experimental Pathology of the Medical Faculty Münster and Wesley Warren from the McDonnell Genome Institute in Washington have a special interest in the analysis of the jumping genes of the tarsiers. „By analyzing the jumping elements, we can learn so much about our own evolution," explains Jürgen Schmitz, director of the study. These jumping genes are DNA sections that can copy themselves and take up new positions in the genome.

As in humans, these jumping genes make up around half of the genetic material in tarsiers. In cooperation with the University of California, Santa Cruz as well as Christian Roos and Angela Noll of the German Primate Center (DPZ) in Göttingen, the scientists discover jumping genes that were unknown to date and explain their distribution mechanisms. "Thanks to the availability of the tarsier genome, it was possible to detect integrations of jumping genes that dates way back," explains Jürgen Schmitz.

Comparative studies with other primates have shown that around 50 million years ago in earlier descendants of haplorrhines, many of these genes have lost their jumping character. Instead, other forms of jumping genes evolved in primates, which now account for a very large part of our own genome. An extreme decline in the primate population was probably the reason for the change. The genetic material of the tarsier is of particular scientific interest in the phylogenetic development because it has characteristics of two different species of primate groups - that of the strepsirrhines, which include the lemurs and loris, as well as characteristics of higher primates to which the monkeys and humans belong.

"In addition, we have for the first time discovered that a complete genome of a mitochondrion is integrated into a nuclear genome," explains Jürgen Schmitz. "Mitochondria are cellular organelles with their own genetic material. A complete integration has never been proven before in mammals.“ Furthermore, several genes were identified that make the small forest dwellers so unique and are responsible for their distinctive vision and extraordinary jumping ability. The analysis also showed that currently the population size of the tarsier is at its lowest levels in history.

"We hope that our new research results and the unique position of tarsiers in the phylogeny of primates will entail many further studies with the aim of a deeper understanding of the biodiversity and genetics of primates, as well as an increased awareness of these particular primates ", Angela Noll of the German Primate Center summarizes the importance of the study.

Original publication:

Schmitz, J. et al. (2016): Genome sequence of the basal haplorrhine primate Tarsius syrichta reveals unusual insertions. Nat. Commun. 7, 12997 doi: 10.1038/ncomms12997 (2016).

Contact and suggestion for editors

Dr. Angela Noll
Tel: +49 551 3851-481
E-Mail: ANoll@dpz.eu

Dr. Christian Roos
Tel: +49 551 3851-300
E-Mail: CRoos@dpz.eu

Dr. Sylvia Siersleben (Communication)
Tel: +49 551 3851-163
E-Mail: ssiersleben@dpz.eu

Printable pictures are available in our Media library. This press release with additional information is also to be found on our website after the embargo has lifted. We kindly request a specimen copy in case of publication.

Captions

P1: A tarsier (Carlito syrichta) with his prey. Photo: David Haring/Duke Lemur Center

P2: A scientific drawing of Carlito syrichta. Image: Jón Baldur Hlídberg, www.fauna.is

P3: Dr. Angela Noll is bioinformatics scientist at the Primate Genetics Laboratory of the DPZ since July 2015. Photo: Karin Tilch

Weitere Informationen:

http://www.dpz.eu/en/home.html - Website German Primate Center
http://medien.dpz.eu/webgate/keyword.html?currentContainerId=3601 - Printable pictures

Dr. Susanne Diederich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>