Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tarsier genome provides new insights into the evolution of primates

06.10.2016

A team of researchers analyzed the genome of the tarsier and gained new insights into the evolution of primates and jumping genes

A German-American research team has analyzed the genetic makeup of the Philippine tarsier and with that, they have shed new light on the early evolution of primates. The participants of the study were the Institute of Experimental Pathology of the Medical Faculty in Münster, the McDonnell Genome Institute in Washington, the University of California in Santa Cruz, as well as the German Primate Center (DPZ) - Leibniz Institute for Primate Research in Göttingen.


A tarsier (Carlito syrichta) with his prey.

Photo: David Haring/Duke Lemur Center

Through the investigations of specific genomic segments, the so-called jumping genes in the genome of the small forest dwellers, researchers have discovered new elements and their distribution mechanisms. In addition, they are able to explain the activity patterns of various other jumping genes in the course of the primate evolution. Since humans also belong to the order of primates, the researchers were able to draw conclusions on our own development based on the results (Nature Communications 7, 12997).

Dusk in the Philippine rainforest. In the dense branches of a treetop, a somewhat unusual fellow awakens. The roughly fist-sized forest dweller climbs from its tree hole and prepares for the night. With its big eyes, each one bigger than its brain, he takes aim at a grasshopper. He is unable to move his eyes, but thanks to his highly modified cervical vertebra, he has the ability to turn his head 180 degrees in either direction.

With his long, thin fingers the small carni- and insectivore attacks the grasshopper and enjoys it. Its scientific name tarsier (tarsius singular) was given because of his special tarsi feet. The hind legs are strong, and he can take a leap of up to six meters from tree to tree. With a weight of approximately 150 grams, the tarsier is lighter than two bars of chocolate but for research purposes, he is considered a heavyweight because he covers an unknown period of primate evolution.

What can such a strange contemporary tell us about the early evolution of primates? The answer lies hidden in the genome. To find out just what makes these little primates so unique, a German-American research team used modern genetic methods (i.a. high-throughput sequencing) to decipher its genetic material. In the subsequent in-depth analyses of genetic material, special attention was given to so-called jumping genes that can play an important role in the evolution of genes and genomes and thus also for the evolution of primates.

The scientists led by Jürgen Schmitz from the Institute of Experimental Pathology of the Medical Faculty Münster and Wesley Warren from the McDonnell Genome Institute in Washington have a special interest in the analysis of the jumping genes of the tarsiers. „By analyzing the jumping elements, we can learn so much about our own evolution," explains Jürgen Schmitz, director of the study. These jumping genes are DNA sections that can copy themselves and take up new positions in the genome.

As in humans, these jumping genes make up around half of the genetic material in tarsiers. In cooperation with the University of California, Santa Cruz as well as Christian Roos and Angela Noll of the German Primate Center (DPZ) in Göttingen, the scientists discover jumping genes that were unknown to date and explain their distribution mechanisms. "Thanks to the availability of the tarsier genome, it was possible to detect integrations of jumping genes that dates way back," explains Jürgen Schmitz.

Comparative studies with other primates have shown that around 50 million years ago in earlier descendants of haplorrhines, many of these genes have lost their jumping character. Instead, other forms of jumping genes evolved in primates, which now account for a very large part of our own genome. An extreme decline in the primate population was probably the reason for the change. The genetic material of the tarsier is of particular scientific interest in the phylogenetic development because it has characteristics of two different species of primate groups - that of the strepsirrhines, which include the lemurs and loris, as well as characteristics of higher primates to which the monkeys and humans belong.

"In addition, we have for the first time discovered that a complete genome of a mitochondrion is integrated into a nuclear genome," explains Jürgen Schmitz. "Mitochondria are cellular organelles with their own genetic material. A complete integration has never been proven before in mammals.“ Furthermore, several genes were identified that make the small forest dwellers so unique and are responsible for their distinctive vision and extraordinary jumping ability. The analysis also showed that currently the population size of the tarsier is at its lowest levels in history.

"We hope that our new research results and the unique position of tarsiers in the phylogeny of primates will entail many further studies with the aim of a deeper understanding of the biodiversity and genetics of primates, as well as an increased awareness of these particular primates ", Angela Noll of the German Primate Center summarizes the importance of the study.

Original publication:

Schmitz, J. et al. (2016): Genome sequence of the basal haplorrhine primate Tarsius syrichta reveals unusual insertions. Nat. Commun. 7, 12997 doi: 10.1038/ncomms12997 (2016).

Contact and suggestion for editors

Dr. Angela Noll
Tel: +49 551 3851-481
E-Mail: ANoll@dpz.eu

Dr. Christian Roos
Tel: +49 551 3851-300
E-Mail: CRoos@dpz.eu

Dr. Sylvia Siersleben (Communication)
Tel: +49 551 3851-163
E-Mail: ssiersleben@dpz.eu

Printable pictures are available in our Media library. This press release with additional information is also to be found on our website after the embargo has lifted. We kindly request a specimen copy in case of publication.

Captions

P1: A tarsier (Carlito syrichta) with his prey. Photo: David Haring/Duke Lemur Center

P2: A scientific drawing of Carlito syrichta. Image: Jón Baldur Hlídberg, www.fauna.is

P3: Dr. Angela Noll is bioinformatics scientist at the Primate Genetics Laboratory of the DPZ since July 2015. Photo: Karin Tilch

Weitere Informationen:

http://www.dpz.eu/en/home.html - Website German Primate Center
http://medien.dpz.eu/webgate/keyword.html?currentContainerId=3601 - Printable pictures

Dr. Susanne Diederich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>