Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeting dormant HIV

19.09.2016

Discovery of a novel, advanced technique to identify the rare cells where human immunodeficiency virus (HIV) hides in patients taking antiretroviral therapy (ART). This is an important step forward in the search for a HIV/AIDS cure.

Why wake up the virus? To better kill it, of course. A team from the University of Montreal Hospital Research Centre (CRCHUM) has taken an important step forward in the search for a HIV/AIDS cure. The laboratory of Dr. Daniel Kaufmann has developed a highly accurate technique for detecting the rare cells that hide the virus and prevent current therapies from curing HIV infection.


T cells from a HIV-infected patient were stained for HIV RNA (red), HIV protein (green) and the nucleus (blue) and analyzed by microscopy. This approach allows researchers to analyze very rare HIV-infected cells from humans in unprecedented detail. Credit: Dr. Daniel Kaufmann laboratory, CRCHUM.

"We can wake up the virus and then find the rare cells that have been hiding it at very low numbers, a limit of one cell in a million. This is an unprecedented level of accuracy, which opens the door to individualized monitoring of HIV-positive patients and could facilitate the development of personalized treatments," said Dr. Kaufmann, senior author of a study on the subject published in a featured article in the current  issue of Cell Host & Microbe.

HIV reservoirs are cells and tissues in which the virus persists despite ART. The virus predominantly lives and replicates in a particular type of white blood cell, CD4+ T lymphocytes. While antiretroviral drugs are generally successful in controlling the viral load in infected individuals, preventing the progression to acquired immunodeficiency syndrome (AIDS), some viruses remain hidden for years and can be reactivated if patients stop their treatment.

... more about:
»CD4+ »HIV »HIV infection »T lymphocytes »drugs »lymphocytes

"CD4+ T lymphocyte populations are highly variable. To develop new, targeted treatments to eliminate these residual infected cells, we need to find exactly where in the CD4 T lymphocyte population the virus hides. Our research has uncovered these HIV hiding places. We were able to identify and quantify the cells containing hidden virus and then test drugs to wake up HIV,” said Kaufmann, who is a researcher and infectious disease specialist at the University of Montreal Hospital Centre (CHUM).

His team has developed an innovative technique for detecting these reservoirs – a way of taking a “photo” of each individual cell hiding the virus – a significant breakthrough, as this approach is 1,000 times more accurate than current technologies. Once the HIV hiding places are found, the researchers can use a “shock and kill” strategy to eliminate the virus in two stages. Firstly, the HIV must be woken up from its dormant state in the cells. The virus then becomes visible to the immune system or drugs that can eliminate it.

Professor Kaufmann’s team analyzed the blood of 30 patients infected with HIV, both before patients started treatment and after they received ART. “We were able to detect the virus in CD4+ T lymphocytes in almost all of the patients we analyzed,” said Amy Baxter, a postdoctoral fellow at the CRCHUM and first author of the study.

The researchers then tested two so-called latency reversal drugs: bryostatin and a derivative of ingenol. These drugs were developed to fight cancer, but might also be used against HIV. "While our studies were conducted in the laboratory, a clinical trial would involve using such drugs to wake up the virus while the patient continues taking ART to ensure that the reactivated virus can not infect other cells,” explained Dr. Kaufmann.

“In the laboratory we found that the two drugs wake up different populations of CD4+ T lymphocytes, thus waking up different reservoirs. The ingenol derivative activates a population called central memory cells. These cells can live for years in patients, all the while hiding the virus. Therefore, it is particularly important to target these reservoirs,” noted Baxter.

At first sight it appears as though the virus hides in similar places in different patients. However, Dr. Kaufmann’s team has revealed that there is also large variability from one patient to another. “We may have to adjust the treatment for individual patients, depending on the specific HIV hiding places in each case. To minimize the virus pools, we will have to assess patients and tailor the “shock and kill” therapies to their profiles,” said Dr. Kaufmann.

Before arriving at a potential treatment for humans, the researchers are planning to evaluate the effectiveness of new drugs to awaken similar virus reservoirs in monkeys and determine where the virus is hidden. If the drugs are well tolerated, clinical trials will begin in a few years. After 30 years of research to cure HIV infection and AIDS, this opens a whole new avenue in understanding how scientists could track and find infected cells, then wake up and kill the virus hiding deep inside.

Full bibliographic information

“Single-cell characterization of viral translation-competent reservoirs in HIV-infected individuals.", Amy E. Baxter, Julia Niessl, Rémi Fromentin, Jonathan Richard, Filippos Porichis, Roxanne Charlebois, Marta Massanella, Nathalie Brassard, Nirmin Alsahafi, Gloria-Gabrielle Delgado, Jean-Pierre Routy, Bruce D. Walker, Andrés Finzi, Nicolas Chomont, Daniel E. Kaufmann,

Cell Host & Microbe, September 14, 2016.

About the study

The study “Single-cell characterization of viral translation-competent reservoirs in HIV-infected individuals" was highlighted as a featured article of the September 14, 2016 edition of Cell Host & Microbe. Dr. Daniel Kaufmann (CRCHUM & University of Montreal) and Amy Baxter (CRCHUM & University of Montreal) are senior author and first author of the study, respectively. The study was funded primarily by the National Institutes of Health, the Canadian Institutes of Health Research (CIHR) (Grant #137694), the Canada Foundation for Innovation, and the Réseau sida et maladies infectieuses du Fonds de recherche du Québec – Santé (FRQS).

For more information, see the study: www.sciencedirect.com/science/article/pii/S1931312816303146

Cell Host & Microbre editorial:
http://www.cell.com/cell-host-microbe/fulltext/S1931-3128(16)30355-9

Source: University of Montreal Hospital Research Centre (CRCHUM).

Julie Gazaille | AlphaGalileo

Further reports about: CD4+ HIV HIV infection T lymphocytes drugs lymphocytes

More articles from Life Sciences:

nachricht Light-driven reaction converts carbon dioxide into fuel
23.02.2017 | Duke University

nachricht Oil and gas wastewater spills alter microbes in West Virginia waters
23.02.2017 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>