Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeting a waterborne foe

26.04.2010
A Brandeis biochemist's pioneering research on cryptosporidium could lead to the first effective treatment

Discovered in 1976, cryptosporidium lurks worldwide in water, contaminating swimming pools, water parks, and drinking water supplies. Although it has even been featured on the comedy show The Colbert Report, it is no laughing matter—this microscopic pathogen is a leading cause of diarrhea and malnutrition and the most common source of infection in immune-weakened people such as AIDS patients. It is also a potential bioterrorism agent.

"All you need is a cow and a centrifuge to harvest enough oocysts to infect a small city," says Brandeis University biochemist Liz Hedstrom. Roughly 20 percent of calves are infected by cryptosporidium oocysts, which are found in their feces. In 1993, in the largest waterborne disease outbreak in U.S. history, this nasty protozoan parasite infiltrated Milwaukee's municipal water supply, killing more than 100 people and sickening some 400,000.

Cryptosporidium invades the small intestine, where it opens fire, typically causing severe gastrointestinal distress and even death in people with weakened immune systems. Cryptosporidium is a hardy foe whose oocysts—a spore-like phase in the parasite life cycle—remain stable outside a host for long periods and are resistant to conventional water treatment such as chlorine disinfection.

The latest research news on this waterborne foe will be the focus of Hedstrom's talk, titled "Targeting a prokaryotic protein in a eukaryotic parasite," at the American Society for Biochemistry and Molecular Biology's annual meeting. The talk will be held in the Anaheim Convention Center, Room 304C, on Sunday April 25 at 9:55 am PST. Hedstrom's promising research could lead to an effective treatment to prevent cryptosporidiosis.

Hedstrom and her collaborators made a critical breakthrough in eroding cryptosporidium defenses when they identified IMPDH, a key enzyme involved in the biosynthesis of RNA and DNA, as a potential drug target. Her research has shown that IMPDH inhibitors block the parasite from proliferating in vitro. Importantly, the Cryptosporidium IMPDH has very different properties from those of the human enzyme counterpart.

Next, Hedstrom and her colleagues identified compounds that blocked the action of the Cryptosporidium IMPDH, but spared human IMPDH. Leading a large-scale screen of a commercial library containing 129,000 compounds, Hedstrom discovered more than fifty compounds that specifically inhibit the parasite enzyme. A number of these compounds display antiparasitic activity. Hedstrom is now working on improving the compounds' potency, bioavailability and metabolic stability, a first step in the drug development process.

"It's a difficult problem, but we think that we have some very promising compounds," says Hedstrom.

NOTE TO EDITORS: The American Society for Biochemistry and Molecular Biology annual meeting is part of the Experimental Biology 2010 conference that will be held April 24-28, 2010 at the Anaheim Convention Center. The press is invited to attend or to make an appointment to interview Dr. Hedstrom. Please contact Nicole Kresge at 202.316.5447 or nkresge@asbmb.org.

The American Society for Biochemistry and Molecular Biology (www.asbmb.org) is a nonprofit scientific and educational organization with over 12,000 members. Founded in 1906, the Society is based in Bethesda, Maryland, on the campus of the Federation of American Societies for Experimental Biology. The Society's purpose is to advance the science of biochemistry and molecular biology through publication of scientific and educational journals: the Journal of Biological Chemistry, Molecular & Cellular Proteomics, and the Journal of Lipid Research, organization of scientific meetings, advocacy for funding of basic research and education, support of science education at all levels, and promoting the diversity of individuals entering the scientific workforce.

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>