Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Targeting a waterborne foe

A Brandeis biochemist's pioneering research on cryptosporidium could lead to the first effective treatment

Discovered in 1976, cryptosporidium lurks worldwide in water, contaminating swimming pools, water parks, and drinking water supplies. Although it has even been featured on the comedy show The Colbert Report, it is no laughing matter—this microscopic pathogen is a leading cause of diarrhea and malnutrition and the most common source of infection in immune-weakened people such as AIDS patients. It is also a potential bioterrorism agent.

"All you need is a cow and a centrifuge to harvest enough oocysts to infect a small city," says Brandeis University biochemist Liz Hedstrom. Roughly 20 percent of calves are infected by cryptosporidium oocysts, which are found in their feces. In 1993, in the largest waterborne disease outbreak in U.S. history, this nasty protozoan parasite infiltrated Milwaukee's municipal water supply, killing more than 100 people and sickening some 400,000.

Cryptosporidium invades the small intestine, where it opens fire, typically causing severe gastrointestinal distress and even death in people with weakened immune systems. Cryptosporidium is a hardy foe whose oocysts—a spore-like phase in the parasite life cycle—remain stable outside a host for long periods and are resistant to conventional water treatment such as chlorine disinfection.

The latest research news on this waterborne foe will be the focus of Hedstrom's talk, titled "Targeting a prokaryotic protein in a eukaryotic parasite," at the American Society for Biochemistry and Molecular Biology's annual meeting. The talk will be held in the Anaheim Convention Center, Room 304C, on Sunday April 25 at 9:55 am PST. Hedstrom's promising research could lead to an effective treatment to prevent cryptosporidiosis.

Hedstrom and her collaborators made a critical breakthrough in eroding cryptosporidium defenses when they identified IMPDH, a key enzyme involved in the biosynthesis of RNA and DNA, as a potential drug target. Her research has shown that IMPDH inhibitors block the parasite from proliferating in vitro. Importantly, the Cryptosporidium IMPDH has very different properties from those of the human enzyme counterpart.

Next, Hedstrom and her colleagues identified compounds that blocked the action of the Cryptosporidium IMPDH, but spared human IMPDH. Leading a large-scale screen of a commercial library containing 129,000 compounds, Hedstrom discovered more than fifty compounds that specifically inhibit the parasite enzyme. A number of these compounds display antiparasitic activity. Hedstrom is now working on improving the compounds' potency, bioavailability and metabolic stability, a first step in the drug development process.

"It's a difficult problem, but we think that we have some very promising compounds," says Hedstrom.

NOTE TO EDITORS: The American Society for Biochemistry and Molecular Biology annual meeting is part of the Experimental Biology 2010 conference that will be held April 24-28, 2010 at the Anaheim Convention Center. The press is invited to attend or to make an appointment to interview Dr. Hedstrom. Please contact Nicole Kresge at 202.316.5447 or

The American Society for Biochemistry and Molecular Biology ( is a nonprofit scientific and educational organization with over 12,000 members. Founded in 1906, the Society is based in Bethesda, Maryland, on the campus of the Federation of American Societies for Experimental Biology. The Society's purpose is to advance the science of biochemistry and molecular biology through publication of scientific and educational journals: the Journal of Biological Chemistry, Molecular & Cellular Proteomics, and the Journal of Lipid Research, organization of scientific meetings, advocacy for funding of basic research and education, support of science education at all levels, and promoting the diversity of individuals entering the scientific workforce.

Nicole Kresge | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>