Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Targeted Agent Shows Promise For Chronic Lymphoid Leukemia

Researchers at the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC-James) have identified an experimental agent that targets chronic lymphocytic leukemia and perhaps other proliferative disorders of lymphocytes.

Their study shows that the small-molecule inhibitor CAL-101 directly promotes cell death by apoptosis in chronic lymphocytic leukemia (CLL) cells and disrupts several external survival pathways needed for CLL cell viability and proliferation.

The agent blocks a molecule called PI3K-delta, an isomer of the PI3K (phosphatidylinositol-3 kinase) pathway, which is activated mainly in blood-forming, or hematopoietic, cells.

The research was posted recently in the journal Blood.

“Overall, our findings provide a rationale for the development of CAL-101 as the first in a new class of targeted therapies for CLL,” says principal investigator Amy J. Johnson, assistant professor of hematology and medicinal chemistry, and a CLL researcher in the OSUCCC-James.

“A PI3K inhibitor hasn’t been developed yet because this pathway is required for many essential cellular functions, but the identification of PI3K-delta, which is hematopoietic-selective, unlocks a potential new therapy for B-cell malignancies,” Johnson says.

CLL is the most common from of adult leukemia in the United States, with about 15,000 new cases and 4,500 deaths annually. An estimated 100,760 people in the United States are living with or are in remission from CLL.

People with the asymptomatic phase of CLL can live many years, even without treatment. But once the disease progresses to its symptomatic phase, treatment is required. This is usually a chemotherapy-based regimen that often induces remission. But current therapies are not curative and nearly all patients relapse.

The PI3K pathway is essential for survival of cells generally. This made it an unsuitable target for small molecule inhibitors until recently when research showed that PI3K-delta expression occurs mainly in hematopoietic cell types. Preclinical studies suggest that blocking this molecule may kill B cells with little toxicity to other hematopoietic cells.

The present study, which used CLL cells from patients, found the following:

CLL cells show high PI3K pathway activity and PI3K-delta expression

CAL-101 preferentially kills CLL cells compared to normal B-cells

CAL-101 selectively inhibits PI3K-delta and directly promotes apoptosis in primary CLL cells, and it disrupts multiple external survival pathways

CAL-101 cell killing is caspase dependent and not diminished by the presence of stromal cells

CAL-101 does not kill normal T-cells or NK cells or reduce antibody-dependent cellular cytotoxicity, but it does lower production of inflammatory and anti-apoptotic cytokines by activated T-cells.

Note: A phase I clinical trial (NCT00710528) of CAL-101 is currently under way in select relapsed or refractory hematologic malignancies at Ohio State and other centers.

Funding from the Leukemia and Lymphoma Society, The D. Warren Brown Foundation, and Calistoga Pharmaceuticals supported this research. Amy Johnson is a Paul Calabresi Scholar.

Other researchers involved in this study were Sarah E. M. Herman, John C. Byrd, Amber L. Gordon, Amy J. Wagner, Nyla A. Heerema, Weiqiang Zhao, Joseph M. Flynn, Jeffrey Jones, Leslie Andritsos, Xiaoli Zhang and Lai Wei of Ohio State University; and Kamal D. Puri, Brian J. Lannutti, Neill A. Giese of Calistoga Pharmaceuticals.

The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute is one of only 40 Comprehensive Cancer Centers in the United States designated by the National Cancer Institute. Ranked by U.S. News & World Report among the top cancer hospitals in the nation, The James is the 180-bed adult patient-care component of the cancer program at The Ohio State University. The OSUCCC-James is one of only seven funded programs in the country approved by the NCI to conduct both Phase I and Phase II clinical trials.

Darrell E. Ward | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>