Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New target for developing effective anti-depressants

12.04.2011
For the first time in a human model, scientists have discovered how anti-depressants make new brain cells. This means that researchers can now develop better and more efficient drugs to combat depression.

Previous studies have shown that anti-depressants make new brain cells, however, until now it was not known how they did it. In a study to be published in the journal Molecular Psychiatry, researchers from the Institute of Psychiatry, King's College London, show that anti-depressants regulate the glucocorticoid receptor (GR) - a key protein involved in the stress response. Moreover, the study shows that all types of anti-depressant are dependent on the GR to create new cells.

Depression is expected to be the second leading burden of disease world wide by the year 2020. Recent studies have demonstrated that depressed patients show a reduction in a process called 'neurogenesis', that is, a reduction in the development of new brain cells. This reduced neurogenesis may contribute to the debilitating psychological symptoms of depression, such as low mood or impaired memory. With as much as half of all depressed patients failing to improve with currently available treatments, developing new effective anti-depressant treatment still remains a great challenge, which makes it crucial to identify new potential mechanisms to target.

The Laboratory of Stress, Psychiatry and Immunology (SPI-lab) at King's has been looking into the role of the GR in depression for a number of years. In this study, scientists used human hippocampal stem cells, the source of new cells in the human brain, as a new model to investigate 'in a dish' the effects of anti-depressants on brain cells.

Christoph Anacker, PhD student at the Institute of Psychiatry at King's and lead author of the study said: 'For the first time in a clinically relevant model, we were able to show that anti-depressants produce more stem cells and also accelerate their development into adult brain cells. Additionally, we demonstrate for the first time that stress hormones, which are generally very high in depressed patients, show the opposite effect.

'We discovered that a specific protein in the cell, the glucocorticoid receptor, is essential for this to take place. The anti-depressants activate this protein which switches on particular genes that turn immature 'stem' cells into adult 'brain' cells.

'By increasing the number of new-born cells in the adult human brain, anti-depressants counteract the damaging effects of stress hormones and may overcome the brain abnormalities which may cause low mood and impaired memory in depression.'

Anacker concludes: 'Having identified the glucocorticoid receptor as a key player in making new brain cells, we will now be able to use this novel stem cell system to model psychiatric illnesses in the laboratory, test new compounds and develop much more effective, targeted anti-depressant drugs. However, first it is important that future studies investigate all possible effects that the increase of neurogenesis has on behaviour in humans.'

This study was funded by the National Institute for Health Research Biomedical Research Centre for Mental Health at the South London and Maudsley NHS Foundation Trust & Institute of Psychiatry, King's College London, and the UK Medical Research Council. The study was jointly led by the senior authors Dr Carmine M. Pariante, at the Laboratory of Stress, Psychiatry and Immunology in the Department of Psychological Medicine, and Dr Sandrine Thuret and Professor Jack Price, at the Centre for the Cellular Basis of Behaviour, all based at Institute of Psychiatry King's College London.

Louise Pratt | EurekAlert!
Further information:
http://www.kcl.ac.uk

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>