Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tarantulas shoot silk from feet

16.05.2011
Climbing is possibly one of the riskiest things an adult tarantula can do. Weighing in at anything up to 50gm, the dry attachment systems that keep daintier spiders firmly anchored are on the verge of failure in these colossal arachnids.

'The animals are very delicate. They wouldn't survive a fall from any height,' explains Claire Rind from the University of Newcastle, UK. In 2006, Stanislav Gorb and his colleagues published a paper in Nature suggesting that tarantulas may save themselves from falling by releasing silk threads from their feet.

However, this was quickly refuted by another group that could find no evidence of the silk. Fascinated by spiders and intrigued by the scientific controversy, Rind decided this was too good a challenge to pass up and discovered that tarantulas shoot silk from their feet when they lose their footing. She publishes her results in The Journal of Experimental Biology at http://jeb.biologists.org/content/214/11/1874.abstract.

Teaming up with undergraduate Luke Birkett, Rind tested how well three ground-dwelling Chilean rose tarantulas kept their footing on a vertical surface. Gently placing one of the animals in a very clean aquarium with microscope slides on the floor, the duo cautiously upended the aquarium to see if the tarantula could hang on. 'Given that people said tarantulas couldn't stay on a vertical surface, we didn't want to find that they were right,' remembers Rind. But the spider didn't fall, so the duo gave the aquarium a gentle shake. The tarantula slipped slightly, but soon regained its footing. So the spider had held on against the odds, but would Rind find silk on the microscope slides?

Looking at the glass by eye, Rind couldn't see anything, but when she and Birkett looked closely under a microscope, they found minute threads of silk attached to the microscope slide where the spider had stood before slipping.

Next, Rind had to prove that the silk had come from the spiders' feet and not their web-spinning spinnerets. Filming the Chilean rose tarantulas as they were rotated vertically, Rind, Benjamin-James Duncan and Alexander Ranken disregarded any tests where other parts of the spiders' bodies contacted the glass and confirmed that the feet were the source of the silk. Also, the arachnids only produced their safety threads when they slipped.

But where on the spiders' feet was the silk coming from? Having collected all of the moulted exoskeletons from her Mexican flame knee tarantula, Fluffy, when she was young, Rind looked at them with a microscope and could see minute threads of silk protruding from microscopic hairs on Fluffy's feet. Next, the team took a closer look at moults from Fluffy, the Chilean rose tarantulas and Indian ornamental tarantulas with scanning electron microscopy and saw minute reinforced silk-producing spigots, which extended beyond the microscopic attachment hairs on the spiders' feet, widely distributed across the foot's surface. Rind also looked at the tarantula family tree, and found that all three species were only distantly related, so probably all tarantula feet produce the life-saving silk threads.

Finally, having noticed the distribution of the spigots, Rind realised that tarantulas could be the missing link between the first silk-producing spiders and modern web spinners. She explains that the spread of spigots on the tarantula's foot resembled the distribution of the silk spigots on the abdomen of the first silk spinner, the extinct Attercopus spider from 386 million years ago. The modern tarantula's spigots also looked more similar to mechanosensory hairs that are distributed over the spider's entire body, possibly making them an evolutionary intermediate in the development of silk spinning. So, not only has Fluffy settled a heated scientific debate but she also may be a link to the silk spinners of the past.

IF REPORTING ON THIS STORY, PLEASE MENTION THE JOURNAL OF EXPERIMENTAL BIOLOGY AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://jeb.biologists.org

REFERENCE: Rind, C., Birkett, C. L., Duncan, B.-J. A. and Ranken, A. J. (2011). Tarantulas cling to smooth vertical surfaces by secreting silk from their feet. J. Exp. Biol. 214, 1874-1879.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

Kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com
http://jeb.biologists.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>