Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tapeworm Drug Inhibits Colon Cancer Metastasis - First Results in Mice – Clinical Trials Planned

20.06.2011
A compound that for about 60 years has been used as a drug against tapeworm infection is also apparently effective against colon cancer metastasis, as studies using mice have shown.

The compound silences a gene that triggers the formation of metastases in colon cancer. Professor Ulrike Stein (Experimental and Clinical Research Center, Charité/Max Delbrück Center, MDC, Berlin, Germany) made this discovery in collaboration with Professor Robert H. Shoemaker (National Cancer Institute, NCI, Frederick, Maryland, USA (JNCI, Vol. 103, No. 12, June 17, 2011)*. Plans are already underway with Professor Peter M. Schlag (Charité Comprehensive Cancer Center) to conduct a clinical trial.

Colon cancer is one of the most common tumor diseases in Western countries. In Germany alone, there are approximated 73 000 new cases of the disease every year. Despite surgery, chemotherapy and radiation therapy, only about half of the affected patients are cured.

The reason is that around 20 percent of the colon cancer patients already have metastases at diagnosis and in about one third of the patients, metastasis occurs despite successful initial treatment. Of these patients with metastatic colon cancer, the five-year survival rate is only about 10 percent. By contrast, for nonmetastatic colon cancer patients the survival rate is 90 percent.

Scientists have known for several years that the gene S100A4/metastasin can initiate colon cancer metastasis. Five years ago Professor Stein, working together with Professor Schlag and Professor Walter Birchmeier (MDC), showed how this gene is regulated. They found that the beta-catenin gene, when mutant, activates this S100A4/metastasin gene, thus triggering colon cancer metastasis. Beta-catenin normally regulates cellular adhesion.

The scientists looked for compounds that block the expression of the metastasin gene. They screened 1280 compounds and found what they were looking for: niclosamide, a drug until now approved for use to treat intestinal parasite infections from tapeworms.

Surprisingly, the researchers discovered that niclosamide inhibits the beta catenin-driven expression of the S100A4/metastasin gene, both in the cell culture and in mice. The animals had fewer metastases. Next, the researchers want to conduct clinical trials to find out whether the compound is also effective in patients with metastasizing colon cancer.

*Novel Effect of Antihelminthic Niclosamide on S100A4-Mediated Metastatic Progression in Colon Cancer

Ulrike Sack, Wolfgang Walther, Dominic Scuiero, Mike Selby, Dennis Kobelt, Margit Lemm, Iduna Fichtner, Peter M. Schlag, Robert H. Shoemaker, Ulrike Stein

Experimental and Clinical Research Center , Charité University Medicine at the Max Delbrück-Center for Molecular Medicine, Berlin

Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>