Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tapeworm Drug Inhibits Colon Cancer Metastasis - First Results in Mice – Clinical Trials Planned

20.06.2011
A compound that for about 60 years has been used as a drug against tapeworm infection is also apparently effective against colon cancer metastasis, as studies using mice have shown.

The compound silences a gene that triggers the formation of metastases in colon cancer. Professor Ulrike Stein (Experimental and Clinical Research Center, Charité/Max Delbrück Center, MDC, Berlin, Germany) made this discovery in collaboration with Professor Robert H. Shoemaker (National Cancer Institute, NCI, Frederick, Maryland, USA (JNCI, Vol. 103, No. 12, June 17, 2011)*. Plans are already underway with Professor Peter M. Schlag (Charité Comprehensive Cancer Center) to conduct a clinical trial.

Colon cancer is one of the most common tumor diseases in Western countries. In Germany alone, there are approximated 73 000 new cases of the disease every year. Despite surgery, chemotherapy and radiation therapy, only about half of the affected patients are cured.

The reason is that around 20 percent of the colon cancer patients already have metastases at diagnosis and in about one third of the patients, metastasis occurs despite successful initial treatment. Of these patients with metastatic colon cancer, the five-year survival rate is only about 10 percent. By contrast, for nonmetastatic colon cancer patients the survival rate is 90 percent.

Scientists have known for several years that the gene S100A4/metastasin can initiate colon cancer metastasis. Five years ago Professor Stein, working together with Professor Schlag and Professor Walter Birchmeier (MDC), showed how this gene is regulated. They found that the beta-catenin gene, when mutant, activates this S100A4/metastasin gene, thus triggering colon cancer metastasis. Beta-catenin normally regulates cellular adhesion.

The scientists looked for compounds that block the expression of the metastasin gene. They screened 1280 compounds and found what they were looking for: niclosamide, a drug until now approved for use to treat intestinal parasite infections from tapeworms.

Surprisingly, the researchers discovered that niclosamide inhibits the beta catenin-driven expression of the S100A4/metastasin gene, both in the cell culture and in mice. The animals had fewer metastases. Next, the researchers want to conduct clinical trials to find out whether the compound is also effective in patients with metastasizing colon cancer.

*Novel Effect of Antihelminthic Niclosamide on S100A4-Mediated Metastatic Progression in Colon Cancer

Ulrike Sack, Wolfgang Walther, Dominic Scuiero, Mike Selby, Dennis Kobelt, Margit Lemm, Iduna Fichtner, Peter M. Schlag, Robert H. Shoemaker, Ulrike Stein

Experimental and Clinical Research Center , Charité University Medicine at the Max Delbrück-Center for Molecular Medicine, Berlin

Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>