Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tanning bed users exhibit brain changes and behavior similar to addicts

11.08.2011

People who frequently use tanning beds may be spurred by an addictive neurological reward-and-reinforcement trigger, researchers at UT Southwestern Medical Center have found in a pilot study.

This could explain why some people continue to use tanning beds despite the increased risk of developing melanoma, the most lethal form of skin cancer. The brain activity and corresponding blood flow tracked by UT Southwestern scientists involved in the study is similar to that seen in people addicted to drugs and alcohol.

“Using tanning beds has rewarding effects in the brain so people may feel compelled to persist in the behavior even though it’s bad for them,” said Dr. Bryon Adinoff, professor of psychiatry and senior author of the study available online and in a future print edition of Addiction Biology. “The implication is, ‘If it’s rewarding, then could it also be addictive?’ It’s an important question in the field.”

About 120,000 new cases of melanoma are diagnosed in the U.S. each year, according to the Skin Cancer Foundation. People younger than 30 who use a tanning bed 10 times a year have eight times the risk of developing malignant melanoma. While public knowledge of these dangers has grown, so has the regular use of tanning beds.

In this study, participants used tanning beds on two separate occasions: one time they were exposed to ultraviolet radiation and another time special filters blocked exposure to ultraviolet radiation. Participants did not know on which session they received the real or the filtered ultraviolet exposure. At each visit, participants were asked before and after each session how much they felt like tanning. Participants were also administered a compound that allowed scientists to measure brain blood flow while they were tanning.

Dr. Adinoff, who also is a staff physician at the Veterans Affairs North Texas Health Care System, said the next step is to create technology to further study brain changes among frequent tanners.

Other UT Southwestern researchers involved in the study were Dr. Heidi Jacobe, assistant professor of dermatology; Dr. Michael Devous, professor of radiology; and Thomas Harris, senior research scientist. Former dermatology resident Dr. Cynthia Harrington served as lead author.

The study was funded by the Department of Dermatology at UT Southwestern. Dr. Steven Feldman of Wake Forest University donated the ultraviolet radiation filters used in the tanning bed, and GE Healthcare donated the radioligand, the compound that traced the brain changes.

Visit http://www.utsouthwestern.org/neurosciences to learn more about UT Southwestern’s clinical services in neurosciences, including psychiatry.

Media Contact: LaKisha Ladson
214-648-3404
lakisha.ladson@utsouthwestern.edu

LaKisha Ladson | EurekAlert!
Further information:
http://www.utsouthwestern.edu

Further reports about: Tanning blood flow participants ultraviolet radiation

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>