Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taming the molecule’s Dr Jekyll and Mr Hyde

15.06.2011
Many organic molecules are non-superimposable with their mirror image. The two forms of such a molecule are called enantiomers and can have different properties in biological systems.

The problem is to control which enantiomer you want to produce – a problem that has proved to be important in the pharmaceutical industry. Researchers at the University of Gothenburg have now come up with a new method to control the process.

“Organic chemists think that it’s impossible to create only one of the enantiomers without introducing some kind of optical activity into the reaction, but I’ve succeeded,” says Theonitsa Kokoli at the University of Gothenburg’s Department of Chemistry. “My method will allow the industry to produce the version they want without the use of a catalyst.”

The phenomenon of non-superimposable mirror-image molecular structures is known as chirality. The two enantiomers can be compared to a pair of hands; they are non-superimposable mirror images of each other. A consequence of the different properties in biological systems is that a molecule can behave either as Dr Jekyll or Mr Hyde. The different characteristics in the enantiomers can be harmless, like in the limonene molecule. One enantiomer smells like orange and the other like lemon.

Thalidomide is a good example of how different forms of the same molecule can have disastrous consequences. One of the enantiomers was calming and eased nausea in pregnant women, while the other caused serious damage to the foetus. The thalidomide catastrophe is one of the reasons that a lot of research is devoted to chirality, as it is absolutely vital to be able to control which form of the molecule that is produced. Research on chirality has resulted in several Nobel Prizes over the years.

In biomolecules like DNA and proteins only one of the enantiomers exists in nature. In contrast to biomolecules, the same does not apply when chiral compounds are created synthetically in the lab. Generally an equal amount of both enantiomers is produced. One way of creating an excess of one enantiomer is to use a chiral catalyst, but this only transfers the properties that are already present in the catalyst.

“I’ve been working with absolute asymmetric synthesis instead, where optical activity is created,” says Kokoli. “This is considered impossible by many organic chemists. I’ve used crystals in my reactions, where the two forms have crystallised as separate crystals, which in itself is fairly unusual. The product that was formed after the reactions comprised just one enantiomer.”

While the results of Kokoli’s research are particularly significant for the pharmaceuticals industry, they can also be used in the production of flavourings and aromas.

The thesis has been successfully defended on May 6, 2011

Helena Aaberg | idw
Further information:
http://gupea.ub.gu.se/handle/2077/24935
http://www.gu.se

Further reports about: Hyde Jekyll Kokoli Nobel Prize Taming biological system molecular structure

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>