Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Taking tissue regeneration beyond state-of-the-art


Researchers in the United Kingdom and Malaysia are developing a new class of injectable material that stimulates stem cells to regenerate damaged tissue and form new blood vessels, heart and bone tissue.

Their aim is to produce radical new treatments that will reduce the need for invasive surgery, optimise recovery and reduce the risk of undesirable scar tissue.

The research, which brings together expertise at the University of Nottingham and its Malaysia Campus (UNMC), is part of the “Rational Bioactive Materials Design for Tissue Generation” or “Biodesign” project – an €11m EU-funded initiative involving 21 research teams from across Europe.

“This research heralds a step-change in approaches to tissue regeneration,” says Professor Kevin Shakesheff, Head of the School of Pharmacy at the University of Nottingham's UK campus.

“Current biomaterials are poorly suited to the needs of tissue engineering and regenerative medicine. Our aim is to develop new materials and medicines that will stimulate tissue regeneration rather than wait for the body to start the process itself.”

UNMC is building on its expertise in nanotechnology for drug delivery. “Here in Malaysia we are looking at synthesising microparticles that can be injected directly into a patient at the site of injury to promote tissue re-growth,” says Professor Andrew Morris, an expert in transdermal drug delivery and Head of the School of Pharmacy (UNMC). “These microparticles would act as a scaffold to encourage regrowth in bone tissue, skeletal muscle and potentially even cardiac muscle.”

This research is going to have a significant impact on patients,” says Dr. Nashiru Billa who is the Associate Dean for Research in the Faculty of Science. “In future, you could include anti-cancer drugs in the delivery system that would not only lead to the growth of the tissue but would also help kill cancer cells within the bone tissue.”

For more information contact:
Josephine Dionisappu
PR & Communications Manager
Tel: +60 (03) 8924 8746

Dr. Nashiru Billa
Tel: +60 (03) 8924 8211.

Notes to editors:
The University of Nottingham has 43,000 students and is ‘the nearest Britain has to a truly global university, with campuses in China and Malaysia  modelled on a headquarters that is among the most attractive in Britain’ (Times Good University Guide 2014). It is also the most popular university in the UK among graduate employers, one of the  world’s greenest universities, and winner of the Times Higher Education Award for ‘Outstanding Contribution to Sustainable Development’. It is ranked in the World’s Top 75 universities by the QS World University Rankings.

Josephine Dionisappu | Research SEA News
Further information:

Further reports about: Malaysia Pharmacy UNMC injury microparticles state-of-the-art treatments

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>