Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking tissue regeneration beyond state-of-the-art

06.06.2014

Researchers in the United Kingdom and Malaysia are developing a new class of injectable material that stimulates stem cells to regenerate damaged tissue and form new blood vessels, heart and bone tissue.

Their aim is to produce radical new treatments that will reduce the need for invasive surgery, optimise recovery and reduce the risk of undesirable scar tissue.


The research, which brings together expertise at the University of Nottingham and its Malaysia Campus (UNMC), is part of the “Rational Bioactive Materials Design for Tissue Generation” or “Biodesign” project – an €11m EU-funded initiative involving 21 research teams from across Europe.

“This research heralds a step-change in approaches to tissue regeneration,” says Professor Kevin Shakesheff, Head of the School of Pharmacy at the University of Nottingham's UK campus.

“Current biomaterials are poorly suited to the needs of tissue engineering and regenerative medicine. Our aim is to develop new materials and medicines that will stimulate tissue regeneration rather than wait for the body to start the process itself.”

UNMC is building on its expertise in nanotechnology for drug delivery. “Here in Malaysia we are looking at synthesising microparticles that can be injected directly into a patient at the site of injury to promote tissue re-growth,” says Professor Andrew Morris, an expert in transdermal drug delivery and Head of the School of Pharmacy (UNMC). “These microparticles would act as a scaffold to encourage regrowth in bone tissue, skeletal muscle and potentially even cardiac muscle.”

This research is going to have a significant impact on patients,” says Dr. Nashiru Billa who is the Associate Dean for Research in the Faculty of Science. “In future, you could include anti-cancer drugs in the delivery system that would not only lead to the growth of the tissue but would also help kill cancer cells within the bone tissue.”

For more information contact:
Josephine Dionisappu
PR & Communications Manager
Tel: +60 (03) 8924 8746

or
Dr. Nashiru Billa
Tel: +60 (03) 8924 8211.

Notes to editors:
The University of Nottingham has 43,000 students and is ‘the nearest Britain has to a truly global university, with campuses in China and Malaysia  modelled on a headquarters that is among the most attractive in Britain’ (Times Good University Guide 2014). It is also the most popular university in the UK among graduate employers, one of the  world’s greenest universities, and winner of the Times Higher Education Award for ‘Outstanding Contribution to Sustainable Development’. It is ranked in the World’s Top 75 universities by the QS World University Rankings.

Josephine Dionisappu | Research SEA News
Further information:
http://www.nottingham.edu.my/index.aspx
http://www.researchsea.com

Further reports about: Malaysia Pharmacy UNMC injury microparticles state-of-the-art treatments

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>