Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking the fate of stem cells in hand: RUB researchers generate immature nerve cells

28.06.2012
Matrix modified

RUB biologists have deliberately transformed stem cells from the spinal cord of mice into immature nerve cells. This was achieved by changing the cellular environment, known as the extracellular matrix, using the substance sodium chlorate. Via sugar side chains, the extracellular matrix determines which cell type a stem cell can generate.


The RUB researchers converted neural stem cells from the spinal cord of the mouse into nerve cells; one cell is shown here. The main projection of the nerve cell, the axon is coloured green, other projections, the dendrites, red. Nuclei are shown in blue in the illustration.
Image: Michael Karus

“Influencing precursor cells pharmacologically so that they transform into a particular type of cell can help in cell replacement therapies in future” says Prof. Dr. Stefan Wiese, head of the Molecular Cell Biology work group. “Therapies, for example, for Parkinson’s, multiple sclerosis or amyotrophic lateral sclerosis could then become more efficient.” The team describes its findings in Neural Development.

Sulphate determines the fate of stem cells

Sodium chlorate acts on metabolism enzymes in the cell which attach sulphate groups to proteins. If these sulphates are not installed, the cell continues to form proteins for the extracellular matrix, but with modified sugar side chains. These chains in turn send out signals that define the fate of the stem cells. Stem cells can not only develop into nerve cells, but also form astrocytes or oligodendrocytes, which are, for instance, responsible for the mineral balance of the nerve cells or which form their insulation layer. What happens to the stem cells if the sulphate pattern is changed by sodium chlorate was examined by Dr. Michael Karus and his colleagues.

Positive side effects: nerve cells remain immature

The RUB-laboratories of Prof. Dr. Stefan Wiese, Prof. Dr. Andreas Faissner and Prof. Dr. Irmgard Dietzel-Meyer collaborated for the study. Using antibodies, the researchers showed that cells which they had treated with sodium chlorate developed into nerve cells. They also analysed the flow of sodium ions into the cells. The result: treated cells showed a lower sodium current than mature nerve cells. Sodium chlorate thus favours the development of stem cells into nerve cells, but, at the same time, also inhibits the maturation - a positive side effect, as Wiese explains: “If sodium chlorate stops the nerve cells in an early developmental phase, this could enable them to integrate into the nervous system following a transplant better than mature nerve cells would do.”

Bibliographic record

M. Karus, S. Samtleben, C. Busse, T. Tsai, I.D. Dietzel, A. Faissner, S. Wiese (2012): Normal sulphation levels regulate spinal cord neural precursor cell proliferation and differentiation, Neural Development, doi:10.1186/1749-8104-7-20

Further information

Prof. Dr. Stefan Wiese, Molecular Cell Biology Work Group, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-22041

stefan.wiese@rub.de

Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>