Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It takes two: Brains come wired for cooperation, neuroscientist asserts

04.11.2011
When Nancy Grace and her partner danced a lively rumba to Spandau Ballet's 1980's hit, "True," on a recent "Dancing with the Stars," more was going on in the legal commentator's brain than worry over a possible wardrobe malfunction.

Deep in Grace's cortex, millions of neurons were hard at work doing what they apparently had been built to do: act and react to partner Tristan MacManus's movements to create a pas de deux that had the dancers functioning together (for the most part) like a well-oiled machine.


This is a plain-tailed wren in its natural habita in the cloud forests of Ecuador. Credit: Eric Fortune/JHU

That is because the brain was built for cooperative activity, whether it be dancing on a television reality show, constructing a skyscraper or working in an office, according to a study led by Johns Hopkins behavioral neuroscientist Eric Fortune and published in the Nov. 4 issue of the journal Science.

"What we learned is that when it comes to the brain and cooperation, the whole is definitely greater than the sum of its parts," said Fortune, of the Department of Psychological and Brain Sciences at the university's Krieger School of Arts and Sciences. "We found that the brain of each individual participant prefers the combined activity over his or her own part."

In addition to shedding light on ourselves as social and cooperative beings, the results have important implications for engineers who want to be able to program autonomous robots to work effectively as teams in settings such as bomb squads and combat.

But Fortune's work didn't involve androids or take place on a battlefield. Instead, he and his team took to the cloud forests of Ecuador, on the slopes of the active Antisana Volcano. Why? It's one of the only places in the world where you can find plain-tailed wrens. These chubby-breasted rust-and-gray birds, who don't fly so much as hop and flit through the area's bamboo thickets, are famous for their unusual duets. Their songs -- sung by one male and one female -- take an ABCD form, with the male singing the A and C phrases and the female (who seems to be the song leader) singing B and D.

"What's happening is that the male and female are alternating syllables, though it often sounds like one bird singing alone, very sharply, shrilly and loudly," explained Fortune, who spent hours hacking through the thick bamboo with a machete, trying to catch the songbirds in nets. "The wrens made an ideal subject to study cooperation because we were easily able to tape-record their singing and then make detailed measurements of the timing and sequences of syllables, and of errors and variability in singing performances."

The team then captured some of the wrens and monitored activity in the area of their brains that control singing. They expected to find that the brain responded most to the animal's own singing voice. But that's not what happened.

"In both males and females, we found that neurons reacted more strongly to the duet song -- with both the male and female birds singing -- over singing their own parts alone. In fact, the brain's responses to duet songs were stronger than were responses to any other sound," he said. "It looked like the brains of wrens are wired to cooperate."

So it's clear that nature has equipped the brains of plain-tailed wrens in the Andes of Ecuador to work cooperatively and to prefer "team" activities to solo ones. But what does that have to do with people?

"Brains among vertebrate animals -- frogs, cats, fish, bears and even humans -- are more similar than most people realize," Fortune said. "The neurotransmitter systems that control brain activity at the molecular level are nearly identical among all vertebrates and the layout of the brain structures is the same. Thus, the kinds of phenomena that we have described in these wrens is very relevant to the brains of most, if not all, vertebrate species, including us humans."

Co-authors on the study are Gregory F. Ball of the Department of Psychological and Brain Sciences at Johns Hopkins; Carlos Rodriguez of Pontificia Universidad Catolica del Ecuador; and Melissa Coleman, of Claremont McKenna College. David Li, an undergraduate student majoring in neuroscience at Johns Hopkins, also is a co-author.

This research was supported by the National Science Foundation.

To listen to the Ecuadorian plain-tailed wrens' songs and see short videos of the birds, go here:

http://ecuador.psy.jhu.edu/nsfwren/

Digital photos of Fortune are available. Contact Lisa DeNike at Lde@jhu.edu or 443-845-3148 (cell).

For more about Fortune and his lab:

http://neuroscience.jhu.edu/EricFortune.php

http://pbs.jhu.edu/research/fortune/index.html

Lisa DeNike | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>