It takes 2 to infect

Two so-called invasion proteins are crucial for infection. Each binds a specific receptor on the surface of human cells, which stimulates the host cell to take up the pathogen. Normally, these receptor molecules exert a different function, for example the regulation of cell growth and wound healing. The group's results have now been published in the current issue of the “Journal of Molecular Biology”.

Spoiled meat is one of the sources for Listeria infections leading to listeriosis. Pregnant women, newborns and immune compromised people are susceptible for a severe progression of this disease. Firstly, the pathogen breaches the intestinal barrier and thus enters the body. The key for further spreading is the invasion protein internalin B that is located on the bacterial surface. On human cells, internalin B activates a receptor molecule called “Met”, thereby signaling the host cell to take up the pathogen. Inside the cell, Listeria uses the host cell's nutrients and is somehow sheltered from an immune response.

Until now, the researchers did not know how the bacterial invasion protein activates the human receptor. To solve this question, the structural biologists from the HZI first analysed the crystal structures of the single internalin B molecule and of its complex bound to human Met. “In X-Ray structural analysis we noticed that in protein crystals two internalin B molecules align characteristically,” says Hartmut Niemann, assistant professor at the University of Bielefeld. Professor Dirk Heinz, head of the structural biologists at the HZI, explains: “This gave rise to the idea of a dimer – two congregated internalin B molecules – playing a pivotal role in the activation of the Met receptor.”

Minor changes in the internalin B molecule confirmed their hypothesis: inhibiting the congregation of two internalin B molecules prevented the activation of Met. On the other hand, strengthening the interaction resulted in particularly strong receptor activation.

These results may lead to the development of new protein drugs in the future. “Met plays a major role in the body, for example during wound healing,” says Heinz. “Thanks to the extraordinary ability of the internalin B dimer to strongly activate Met, therapeutics for improved wound healing may result someday.”

Originalartikel: Ligand-Mediated Dimerization of the Met Receptor Tyrosine Kinase by the Bacterial Invasion Protein InlB. Davide M. Ferraris, Ermanno Gherardi, Ying Di, Dirk W. Heinz and Hartmut H. Niemann. J Mol Biol. 2009 Nov 6. [Epub ahead of print]. doi:10.1016/j.jmb.2009.10.074

Media Contact

Dr. Bastian Dornbach EurekAlert!

More Information:

http://www.helmholtz-hzi.de

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors