Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tailored DNA shifts electrons into the 'fast lane'

21.06.2016

DNA nanowire improved by altering sequences

DNA molecules don't just code our genetic instructions. They can also conduct electricity and self-assemble into well-defined shapes, making them potential candidates for building low-cost nanoelectronic devices.


Each ribboning strand of DNA in our bodies is built from stacks of four molecular bases, shown here as blocks of yellow, green, blue and orange, whose sequence encodes detailed operating instructions for the cell. New research shows that tinkering with the order of these bases can also be used to tune the electrical conductivity of nanowires made from DNA.

Credit: Maggie Bartlett, NHGRI

A team of researchers from Duke University and Arizona State University has shown how specific DNA sequences can turn these spiral-shaped molecules into electron "highways," allowing electricity to more easily flow through the strand.

The results may provide a framework for engineering more stable, efficient and tunable DNA nanoscale devices, and for understanding how DNA conductivity might be used to identify gene damage. The study appears online June 20 in Nature Chemistry.

Scientists have long disagreed over exactly how electrons travel along strands of DNA, says David N. Beratan, professor of chemistry at Duke University and leader of the Duke team. Over longer distances, they believe electrons travel along DNA strands like particles, "hopping" from one molecular base or "unit" to the next. Over shorter distances, the electrons use their wave character, being shared or "smeared out" over multiple bases at once.

But recent experiments lead by Nongjian Tao, professor of electrical engineering at Arizona State University and co-author on the study, provided hints that this wave-like behavior could be extended to longer distances.

This result was intriguing, says Duke graduate student and study lead author Chaoren Liu, because electrons that travel in waves are essentially entering the "fast lane," moving with more efficiency than those that hop.

"In our studies, we first wanted to confirm that this wave-like behavior actually existed over these lengths," Liu said. "And second, we wanted to understand the mechanism so that we could make this wave-like behavior stronger or extend it to even longer distances."

DNA strands are built like chains, with each link comprising one of four molecular bases whose sequence codes the genetic instructions for our cells. Using computer simulations, Beratan's team found that manipulating these same sequences could tune the degree of electron sharing between bases, leading to wave-like behavior over longer or shorter distances. In particular, they found that alternating blocks of five guanine (G) bases on opposite DNA strands created the best construct for long-range wave-like electronic motions.

The team theorizes that creating these blocks of G bases causes them to all "lock" together so the wave-like behavior of the electrons is less likely to be disrupted by random wiggling in the DNA strand.

"We can think of the bases being effectively linked together so they all move as one," Liu said. "This helps the electron be shared within the blocks."

The Tao group confirmed these theoretical predictions using break junction experiments, tethering short DNA strands built from alternating blocks of three to eight guanine bases between two gold electrodes and measuring the amount of electrical charge flowing through the molecules.

The results shed light on a long-standing controversy over the exact nature of the electron transport in DNA, Beratan says. They might also provide insight into the design of tunable DNA nanoelectronics, and into the role of DNA electron transport in biological systems.

"This theoretical framework shows us that the exact sequence of the DNA helps dictate whether electrons might travel like particles, and when they might travel like waves," Beratan said. "You could say we are engineering the wave-like personality of the electron."

###

Other authors include Yuqi Zhang and Peng Zhang of Duke University and Limin Xiang and Yueqi Li of Arizona State University.

This research was supported by grants from the Office of Naval Research (N00014-11-1-0729) and the National Science Foundation (DMR-1413257).

CITATION: "Engineering nanometer-scale coherence in soft matter," Chaoren Liu, Yuqi Zhang, Peng Zhang, David N. Beratan, Limin Xiang, Yueqi Li, Nongjian Tao. Nature Chemistry, June 20, 2016. DOI: 10.1038/nchem.2545

Media Contact

Kara J. Manke
kara.manke@duke.edu
919-681-8064

 @DukeU

http://www.duke.edu 

Kara J. Manke | EurekAlert!

Further reports about: DNA DNA strands Electrons electricity genetic instructions sequences waves

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>