Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Tagging Technique Enhances View of Living Cells

05.08.2010
Scientists hoping to understand how cells work may get a boost from a new technique to tag and image proteins within living mammalian cells.

The new technique, developed by a research team led by University of Illinois at Chicago assistant professor of chemistry Lawrence Miller, provides the clearest, most dynamic view yet of protein-protein interactions in cells when viewed through a specially modified microscope.

The finding is reported in the Proceedings of the National Academy of Sciences (advanced online July 19.)

Knowing where and when particular proteins interact within the cell is key to understanding life processes at the molecular level.

In a technique called luminescence resonance energy transfer, two proteins in a cell are labeled with differently colored, luminescent molecules that absorb light of one color and give it off as another color. By taking several pictures of the cell and mathematically analyzing the pictures, researchers gain information about the proteins' precise location and whether they are interacting.

Miller and his team used a novel type of luminescent molecule for labeling, making it possible to get the same information using fewer pictures. This simplifies the analysis and allows for five-fold faster data acquisition. Images show a 50-fold improvement in sensitivity.

Working with Jerrold Turner, professor and associate head of pathology at the University of Chicago, Miller used a hybrid chemical/genetic approach to tag the proteins of interest. One of the proteins was genetically modified so that it would bind to a terbium complex. The terbium complex has an unusually long time between light absorption and emission. The second target protein was genetically modified to link to a fluorescent tag with a short emission lifetime. When the two proteins interact, the luminescent tags are brought very close together, generating a unique luminescent signal that can be seen under a microscope.

Miller and his colleagues modified a conventional microscope to exploit the long lifetime of the terbium protein tags. Pulsed light is used to trigger the terbium luminescence, detected after the other luminescent species within cells have gone dark, allowing unwanted background to be removed from the image.

The new technique "increases sensitivity and makes the whole process faster," Miller said. "This increases the time-resolution of the experiment, allowing you to see how interactions change on a faster time scale, which can help to better figure out how certain biological phenomena work."

The technique required a reliable way to deliver the luminescent terbium probe through a living cell membrane without contaminating or damaging the cell. The researchers developed a way to co-opt pinocytosis, the process by which cells drink in small amounts of surrounding fluid.

"With this new tool, we hope cell biologists and others will be able to study things they haven't seen before, such as interactions that couldn't be visualized in live cells in real time," Miller said. "Hopefully the method will yield information that makes it easier to deduce biological mechanisms."

Other authors include UIC graduate students Harsha Rajapakse (the lead author), Nivriti Gahlaut and Shabnam Mohandessi and University of Chicago graduate student Dan Yu. The terbium tag was developed in collaboration with Richmond, Calif.-based Lumiphore, Inc. Major funding was provided by the National Institutes of Health and the Chicago Biomedical Consortium.

Paul Francuch | Newswise Science News
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>