Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Syracuse University scientists discover how some bacteria may steal iron from their human hosts

04.08.2008
Discovery could lead to new ways to fight tuberculosis

Like their human hosts, bacteria need iron to survive and they must obtain that iron from the environment. While humans obtain iron primarily through the food they eat, bacteria have evolved complex and diverse mechanisms to allow them access to iron.

A Syracuse University research team led by Robert Doyle, assistant professor of chemistry in The College of Arts and Sciences, discovered that some bacteria are equipped with a gene that enables them to harvest iron from their environment or human host in a unique and energy efficient manner. Doyle's discovery could provide researchers with new ways to target such diseases as tuberculosis. The research will be published in the August issue (volume 190, issue 16) of the prestigious Journal of Bacteriology, published by the American Society for Microbiology.

"Iron is the single most important micronutrient bacteria need to survive," Doyle says. "Understanding how these bacteria thrive within us is a critical element of learning how to defeat them."

Doyle's research group studied Streptomyces coelicolor, a Gram-positive bacteria that is closely related to the bacteria that causes tuberculosis. Streptomyces is abundant in soil and in decaying vegetation, but does not affect humans. The TB bacteria and Streptomyces are both part of a family of bacteria called Actinomycetes. These bacteria have a unique defense mechanism that enables them to produce chemicals to destroy their enemies. Some of these chemicals are used to make antibiotics and other drugs.

Actinomycetes need lots of iron to wage chemical warfare on its enemies; however, iron is not easily accessible in the environments in which the bacteria live— e.g. human or soil. Some iron available in the soil is bonded to citrate, making a compound called iron-citrate. Citrate is a substance that cells can use as a source of energy. Doyle and his research team wondered if the compound iron-citrate could be a source of iron for the bacteria. In a series of experiments that took place over more than two years, the researchers observed that Streptomyces could ingest iron-citrate, metabolize the iron, and use the citrate as a free source of energy. Other experiments demonstrated that the bacteria ignored citrate when it was not bonded to iron; likewise, the bacteria ignored citrate when it was bonded to other metals, such as magnesium, nickel, and cobalt.

The next task was to uncover the mechanism that triggered the bacteria to ingest iron-citrate. Computer modeling predicted that a single Streptomyces gene enabled the bacteria to identify and ingest iron-citrate. The researchers isolated the gene and added it to E. coli bacteria (which is not an Actinomycete bacteria). They found that the mutant E. coli bacteria could also ingest iron-citrate. Without the gene, E. coli could not gain access to the iron.

"It's amazing that the bacteria could learn to extract iron from their environment in this way," Doyle says. "We went into these experiments with no idea that this mechanism existed. But then, bacteria have to be creative to survive in some very hostile environments; and they've had maybe 3.5 billion years to figure it out."

The Streptomyces gene enables the bacteria to passively diffuse iron-citrate across the cell membrane, which means that the bacteria do not expend additional energy to ingest the iron. Once in the cell, the bacteria metabolize the iron and, as an added bonus, use the citrate as an energy source. Doyle's team is the first to identify this mechanism in a bacteria belonging to the Actinomycete family. The team plans further experiments to confirm that the gene performs the same signaling function in tuberculosis bacteria. If so, the mechanism could potentially be exploited in the fight against tuberculosis.

"TB bacteria have access to an abundant supply of iron-citrate flowing through the lungs in the blood," Doyle says. "Finding a way to sneak iron from humans at no energy cost to the bacteria is as good as it gets. Our discovery may enable others to figure out a way to limit TB's access to iron-citrate, making the bacteria more vulnerable to drug treatment."

Sara Miller | EurekAlert!
Further information:
http://www.syr.edu

Further reports about: Actinomycete Chemical Streptomyces Tuberculosis citrate experiments ingest iron-citrate mechanism

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>