Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Syracuse University research team discovers switch that causes the body to produce cancerous cells

07.09.2009
A team of Syracuse University researchers discovered a second molecular switch within the Mixed Lineage Leukemia protein complex that they believe could be exploited to prevent the overproduction of abnormal cells that are found in several types of cancer, including leukemia.

The paper was designated as the "Paper of the Week" in the September 4 issue of the Journal of Biological Chemistry (JBC), published by the American Society for Biochemistry and Molecular Biology. Only the top 1 percent of the more than 6,600 articles published each year in JBC receives this prestigious designation.

The research team is led by biologist Michael Cosgrove, assistant professor in SU's College of Arts and Sciences. Anamika Patel, a post-doctoral researcher in Cosgrove's lab, who is being featured on JBC's website, did much of the experimental work for the paper.

During the course of their research to better understand MLL, a protein switch that helps regulate the formation of white blood cells, Cosgrove's research group discovered a new molecular switch within the MLL complex, which they labeled W-RAD.

"We thought that MLL was the only switching mechanism present in this protein complex," Cosgrove said. "However, we discovered the complex is really two switches."

In normal cells, MLL combines with four proteins that comprise the W-RAD group to create a molecular switch that controls DNA packaging events required to form white blood cells. When the MLL switch is broken, white blood cells do not mature properly, resulting in a dangerous proliferation of abnormal cells.

Similarly, the proteins that form the W-RAD complex are overproduced in several types of cancer cells, but until now, scientists did not know the function of these proteins. Cosgrove's group discovered that the W-RAD proteins form a new kind of switch—one that has never been seen before.

"The W-RAD switching mechanism signals the cell to create multiple copies of cancer cells," Cosgrove says. "If we can find a way to turn off this switch, we might be able to slow or stop the production of abnormal cells and convert them to normal cells."

In October 2008, Cosgrove's research group broke new ground in leukemia research by identifying a way to attack a broken MLL switch using a synthetic peptide. The peptide may be able to reprogram the way DNA is packaged in leukemia cells and help convert abnormal cells into normal ones. That research was also published in the Journal of Biological Chemistry. In June, Cosgrove received a $720,000 Research Scholar Grant from the American Cancer Society to expand his work in leukemia research.

Judy Holmes | EurekAlert!
Further information:
http://www.syr.edu

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>