Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Syracuse University chemist develops technique to use light to predict molecular crystal structures

24.03.2011
A Syracuse University chemist has developed a way to use very low frequency light waves to study the weak forces (London dispersion forces) that hold molecules together in a crystal. This fundamental research could be applied to solve critical problems in drug research, manufacturing and quality control.

The research by Timothy Korter, associate professor of chemistry in SU's College of Arts and Sciences, was the cover article of the March 14 issue of Physical Chemistry Chemical Physics. The journal, published by the Royal Society of Chemistry, is one of the most prestigious in the field. A National Science Foundation Early Career Development (CAREER) Award funds Korter's research.

"When developing a drug, it is important that we uncover all of the possible ways the molecules can pack together to form a crystal," Korter says. "Changes in the crystal structure can change the way the drug is absorbed and accessed by the body."

One industry example is that of a drug distributed in the form of a gel capsule that crystallized into a solid when left on the shelf for an extended period of time, Korter explains. The medication inside the capsule changed to a form that could not dissolve in the human body, rendering it useless. The drug was removed from shelves. This example shows that it is not always possible for drug companies to identify all the variations of a drug's crystal structure through traditional experimentation, which is time consuming and expensive.

"The question is," Korter says, "can we leverage a better understanding of London and other weak intermolecular forces to predict these changes in crystal structure?"

Korter's lab is one of only a handful of university-based research labs in the world exploring the potential of THz radiation for chemical and pharmaceutical applications. THz light waves exist in the region between infrared radiation and microwaves and offer the unique advantages of being non-harmful to people and able to safely pass through many kinds of materials. THz can also be used to identify the chemical signatures of a wide range of substances. Korter has used THz to identify the chemical of signatures of molecules ranging from improvised explosives and drug components to the building blocks of DNA.

Korter's new research combines THz experiments with new computational models that accurately account for the effects of the London dispersion forces to predict crystal structures of various substances. London forces are one of several types of intermolecular forces that cause molecules to stick together and form solids. Environmental changes (temperature, humidity, light) impact the forces in ways that can cause the crystal structure to change. Korter's research team compares the computer models with the THz experiments and uses the results to refine and improve the theoretical models.

"We have demonstrated how to use THz to directly visualize these chemical interactions," Korter says. "The ultimate goal is to use these THz signatures to develop theoretical models that take into account the role of these weak forces to predict the crystal structures of pharmaceuticals before they are identified through experimentation."

dy Holmes | EurekAlert!
Further information:
http://www.syr.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>