Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Syracuse University chemist develops technique to use light to predict molecular crystal structures

A Syracuse University chemist has developed a way to use very low frequency light waves to study the weak forces (London dispersion forces) that hold molecules together in a crystal. This fundamental research could be applied to solve critical problems in drug research, manufacturing and quality control.

The research by Timothy Korter, associate professor of chemistry in SU's College of Arts and Sciences, was the cover article of the March 14 issue of Physical Chemistry Chemical Physics. The journal, published by the Royal Society of Chemistry, is one of the most prestigious in the field. A National Science Foundation Early Career Development (CAREER) Award funds Korter's research.

"When developing a drug, it is important that we uncover all of the possible ways the molecules can pack together to form a crystal," Korter says. "Changes in the crystal structure can change the way the drug is absorbed and accessed by the body."

One industry example is that of a drug distributed in the form of a gel capsule that crystallized into a solid when left on the shelf for an extended period of time, Korter explains. The medication inside the capsule changed to a form that could not dissolve in the human body, rendering it useless. The drug was removed from shelves. This example shows that it is not always possible for drug companies to identify all the variations of a drug's crystal structure through traditional experimentation, which is time consuming and expensive.

"The question is," Korter says, "can we leverage a better understanding of London and other weak intermolecular forces to predict these changes in crystal structure?"

Korter's lab is one of only a handful of university-based research labs in the world exploring the potential of THz radiation for chemical and pharmaceutical applications. THz light waves exist in the region between infrared radiation and microwaves and offer the unique advantages of being non-harmful to people and able to safely pass through many kinds of materials. THz can also be used to identify the chemical signatures of a wide range of substances. Korter has used THz to identify the chemical of signatures of molecules ranging from improvised explosives and drug components to the building blocks of DNA.

Korter's new research combines THz experiments with new computational models that accurately account for the effects of the London dispersion forces to predict crystal structures of various substances. London forces are one of several types of intermolecular forces that cause molecules to stick together and form solids. Environmental changes (temperature, humidity, light) impact the forces in ways that can cause the crystal structure to change. Korter's research team compares the computer models with the THz experiments and uses the results to refine and improve the theoretical models.

"We have demonstrated how to use THz to directly visualize these chemical interactions," Korter says. "The ultimate goal is to use these THz signatures to develop theoretical models that take into account the role of these weak forces to predict the crystal structures of pharmaceuticals before they are identified through experimentation."

dy Holmes | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>