Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synthetic virus supports a bat origin for SARS

28.11.2008
Studies establish response strategy for emerging infections

SARS – severe acute respiratory syndrome – alarmed the world five years ago as the first global pandemic of the 21st century. The coronavirus (SARS-CoV) that sickened more than 8,000 people – and killed nearly 800 of them – may have originated in bats, but the actual animal source is not known.

In an effort to understand how SARS-CoV may have jumped from bats to humans, a team of investigators from Vanderbilt University Medical Center and the University of North Carolina at Chapel Hill has now generated a synthetic SARS-like bat coronavirus. The virus – the largest replicating synthetic organism ever made – is infectious in cultured cells and mice, the researchers report in the Proceedings of the National Academy of Sciences.

The findings identify pathways by which a bat coronavirus may have adapted to infect humans. The studies also provide a model approach for rapid identification, analysis and public health responses to future natural or intentional virus epidemics.

Zoonotic viruses – animal pathogens that can cause disease in humans – pose a serious threat to public health, said Mark Denison, M.D., professor of Pediatrics at Vanderbilt and a co-leader of the research with Ralph Baric, Ph.D., professor of Epidemiology at UNC.

"It's becoming more and more clear that new human epidemics will continue to originate in animals," said Denison, who is also an associate professor of Microbiology & Immunology. "However, the mechanisms of trans-species movement and adaptation of viruses from animals to humans remain poorly understood."

At the time of the SARS epidemic, the culprit virus was rapidly identified as a coronavirus (SARS-CoV). But it didn't look like the two human coronaviruses that were known, which cause 20 percent to 30 percent of common colds, and the animal "reservoir" (the original animal host for the virus) remained elusive.

Investigators became convinced that bats were the likely source, but bat coronaviruses had never been successfully grown in culture or animals, which blocked studies of replication, evolution and prevention.

The Denison and Baric teams, with lead authors Michelle Becker, Ph.D., of Vanderbilt, and Rachel Graham Ph.D., of UNC, determined that not being able to grow the virus represented a critical gap in the ability to rapidly identify and respond to new pathogens.

To address this vulnerability, the team decided to use synthetic biology to recover a non-cultivatable virus.

"The idea is, here's the virus, or the virus group, that we think became SARS-CoV," Denison said. "Let's see if we can synthetically recover the bat virus and test it in cultured cells and in animal models – let the bat virus show us the pathways that it may have used to become a human pathogen.

"Then we would have a viable candidate virus to test for diagnostics, vaccines and treatment."

The investigators used published SARS-like bat coronavirus sequences to establish a "consensus" genome sequence – "the best bet for a virus genome that would be viable," Denison said. They then used commercial DNA synthesis and reverse genetics to "build" the consensus viral genome and several variations.

The consensus synthetic SARS-like bat CoV did not initially grow in culture. But substitution of a single small region from human SARS-CoV – the Spike protein receptor binding domain that is critical for viral entry into human cells – allowed the new chimeric SARS-like bat CoV to grow well in monkey cells (commonly used to study human SARS-CoV).

"It was a tremendous surprise that such a small region of SARS-CoV was sufficient to allow the bat virus to move from zero growth to very efficient growth in cells," Denison said.

The chimeric virus also grew well in mouse cells modified to express the receptor for SARS-CoV and in primary human airway epithelial cells. It grew poorly in mice, but a single additional change in the Spike region allowed efficient growth in mice, without causing a SARS-like disease.

The studies suggest that a very simple recombination event may have been enough to allow a coronavirus to move from one species to another, Denison said, adding that "after a virus gains the capacity to jump species, additional simple adaptations may be adequate to increase its ability to grow in the new animal host."

At all stages of design and implementation, the Vanderbilt and UNC teams acknowledged potential safety concerns and encouraged ongoing external safety reviews. Research with all bat viruses – even weakened mutants – was performed under the same stringent biosafety conditions used to study virulent SARS-CoV. The investigators found that human antibodies known to render SARS-CoV noninfectious also neutralized the bat SARS-like coronavirus, providing an additional safety measure.

"The approaches used here address fundamental questions in virus movement between species," Denison said, "and also could improve public health preparedness by allowing rapid responses to naturally emerging or intentionally introduced zoonotic pathogens."

John Howser | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>