Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synthetic Scent Hounds

18.05.2012
Nanostructured sensor for the detection of very low concentrations of explosive

To prevent terrorist attacks at airports, it would be helpful to detect extremely low concentrations of explosives easily and reliably. Despite the development of various sensor technologies, dogs continue to be the most efficient detectors. In the journal Angewandte Chemie, a German and French team has now described a type of micromechanical sensor with a structure derived from the sense organs of butterflies.

One approach used for sensors is based on microcantilevers. These are tiny flexible cantilevers like those used to scan surfaces with atomic force microscopes. When used in “chemical noses” the microcantilivers are coated with a material that specifically binds to the analytes being detected. Cantilevers can vibrate like springs. When analyte molecules are bound to a microcantilever, its mass changes along with its frequency of vibration. This change can be measured.

Because of their very low vapor pressure at room temperature, the highly sensitive, reliable detection of explosives remains a big challenge. In order to make microcantilevers more sensitive to the explosive trinitrotoluene (TNT), research groups led by Denis Spitzer at the French-German Research Institute of Saint Louis and Valérie Keller at the Laboratoire des Matériaux, Surfaces et Procédés pour la Catalyse in Strasbourg have now taken inspiration from the highly sensitive sense organ of some types of butterfly. Male silk moths use this organ to recognize pheromone molecules excreted by females as they land on its broad antennae. These antennae are covered with sensilla, which are porous hairs containing chemonsensing neurons.

The scientists equipped their microcantilevers like the butterfly antennae. They coated them with a dense three-dimensionally ordered layer of titanium dioxide nanotubes oriented vertically, like the butterfly sensilla. This has several advantages: the specific surface of the microcantilevers is significantly increased; titanium dioxide binds well to substances that contain nitro groups, which are characteristic of TNT and other explosives; also, the tubes have an open structure, which improves the movement of mass and ensures a rapid sensor response.

The tubes are about 1700 nm long and have an outer diameter of about 100 nm and a wall thickness of 20 nm. Each cantilever holds about 500,000 of these nanotubes.

For test purposes, the researchers vaporized TNA by heating a tiny crystal. The sensor was able to detect concentrations of less than one part per trillion (ppt) within 3 minutes. The researchers are now working on building a selective detector system for explosives or other gases based on this method.

About the Author
Denis Spitzer is the Director of the NS3E Laboratory, which is a joined research Unit between the French-German Research Institute of Saint-Louis (ISL) and the french Centre National de la Recherche Scientifique (CNRS). He received his Ph.D. degree in physical chemistry from the University Louis Pasteur of Strasbourg in 1993. After some years dedicated to technology transfer, he went back to ISL in 2000.His main research specialties are the elaboration and the study of nanoenergetic materials, the detection of explosives and the imaging of organic compounds by atomic force microscopy. He is the author of 12 patents.
Author: Denis Spitzer, Institut Franco-Allemand de Recherches de Saint-Louis (France), mailto:denis.spitzer@isl.eu
Title: Bio-Inspired Nanostructured Sensor for the Detection of Ultralow Concentrations of Explosives

Angewandte Chemie International Edition 2012, 51, No. 22, 5334–5338, Permalink to the article: http://dx.doi.org/10.1002/anie.201108251

Denis Spitzer | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>