Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synthetic Scent Hounds

18.05.2012
Nanostructured sensor for the detection of very low concentrations of explosive

To prevent terrorist attacks at airports, it would be helpful to detect extremely low concentrations of explosives easily and reliably. Despite the development of various sensor technologies, dogs continue to be the most efficient detectors. In the journal Angewandte Chemie, a German and French team has now described a type of micromechanical sensor with a structure derived from the sense organs of butterflies.

One approach used for sensors is based on microcantilevers. These are tiny flexible cantilevers like those used to scan surfaces with atomic force microscopes. When used in “chemical noses” the microcantilivers are coated with a material that specifically binds to the analytes being detected. Cantilevers can vibrate like springs. When analyte molecules are bound to a microcantilever, its mass changes along with its frequency of vibration. This change can be measured.

Because of their very low vapor pressure at room temperature, the highly sensitive, reliable detection of explosives remains a big challenge. In order to make microcantilevers more sensitive to the explosive trinitrotoluene (TNT), research groups led by Denis Spitzer at the French-German Research Institute of Saint Louis and Valérie Keller at the Laboratoire des Matériaux, Surfaces et Procédés pour la Catalyse in Strasbourg have now taken inspiration from the highly sensitive sense organ of some types of butterfly. Male silk moths use this organ to recognize pheromone molecules excreted by females as they land on its broad antennae. These antennae are covered with sensilla, which are porous hairs containing chemonsensing neurons.

The scientists equipped their microcantilevers like the butterfly antennae. They coated them with a dense three-dimensionally ordered layer of titanium dioxide nanotubes oriented vertically, like the butterfly sensilla. This has several advantages: the specific surface of the microcantilevers is significantly increased; titanium dioxide binds well to substances that contain nitro groups, which are characteristic of TNT and other explosives; also, the tubes have an open structure, which improves the movement of mass and ensures a rapid sensor response.

The tubes are about 1700 nm long and have an outer diameter of about 100 nm and a wall thickness of 20 nm. Each cantilever holds about 500,000 of these nanotubes.

For test purposes, the researchers vaporized TNA by heating a tiny crystal. The sensor was able to detect concentrations of less than one part per trillion (ppt) within 3 minutes. The researchers are now working on building a selective detector system for explosives or other gases based on this method.

About the Author
Denis Spitzer is the Director of the NS3E Laboratory, which is a joined research Unit between the French-German Research Institute of Saint-Louis (ISL) and the french Centre National de la Recherche Scientifique (CNRS). He received his Ph.D. degree in physical chemistry from the University Louis Pasteur of Strasbourg in 1993. After some years dedicated to technology transfer, he went back to ISL in 2000.His main research specialties are the elaboration and the study of nanoenergetic materials, the detection of explosives and the imaging of organic compounds by atomic force microscopy. He is the author of 12 patents.
Author: Denis Spitzer, Institut Franco-Allemand de Recherches de Saint-Louis (France), mailto:denis.spitzer@isl.eu
Title: Bio-Inspired Nanostructured Sensor for the Detection of Ultralow Concentrations of Explosives

Angewandte Chemie International Edition 2012, 51, No. 22, 5334–5338, Permalink to the article: http://dx.doi.org/10.1002/anie.201108251

Denis Spitzer | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>