Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synthetic Molecules Could Add Spice to Fight Against Cancer

19.08.2008
Researchers are combining organic chemistry, computer-aided design and molecular biology techniques in developing and testing pharmaceutical compounds that can fight breast and prostate cancer cells. The synthetic molecules are derived from curcumin, a naturally occurring compound found in the spice turmeric.

Seeking to improve on nature, scientists used a spice-based compound as a starting point and developed synthetic molecules that, in lab settings, are able to kill cancer cells and stop the cells from spreading.

The researchers are combining organic chemistry, computer-aided design and molecular biology techniques in developing and testing pharmaceutical compounds that can fight breast and prostate cancer cells. The synthetic molecules are derived from curcumin, a naturally occurring compound found in the spice turmeric.

Centuries of anecdotal evidence and recent scientific research suggest curcumin has multiple disease-fighting features, including anti-tumor properties. However, when eaten, curcumin is not absorbed well by the body. Instead, most ingested curcumin in food or supplement form remains in the gastrointestinal system and is eliminated before it is able to enter the bloodstream or tissues.

“Newer evidence describes how curcumin interacts with certain proteins to generate anti-cancer activity inside the body. We’re focusing on the pathways that are most involved in cancer and trying to optimize for those properties,” said James Fuchs, assistant professor of medicinal chemistry and pharmacognosy at Ohio State University and principal investigator on the project.

Fuchs presented the research today (8/17) at the American Chemical Society meeting in Philadelphia. He described a selection of the 40 compounds developed to date, emphasizing the synthetic molecules that appear to have the most potential to serve as the basis for anti-cancer drug development.

Fuchs and colleagues are continuing to refine compounds that are best structured to interact with a few overactive proteins that are associated with cell activity in breast and prostate cancers. Blocking these molecular targets can initiate cell death or stop cell migration in the cancers.

A major component of their strategy is called structure-based, computer-aided design, a relatively new technology in the drug discovery field. Before ever working with an actual compound, the scientists can make manipulations to computer-designed molecules and observe simulated interactions between molecules and proteins to predict which structural changes will make the most sense to pursue.

“Most of the interaction between our compound and the overactive protein comes from what are called hot spots on the protein’s surface,” said Chenglong Li, assistant professor of medicinal chemistry and pharmacognosy at Ohio State and an expert in computational chemistry. “For each spot, we can design small chemical fragments and link them together to make a molecule. This is what computer-aided design and modeling can do.”

Some of the most effective compounds have been tested for their effectiveness against human cancer cell lines – as well as whether they might be toxic to healthy cells. So far, the molecule favored by the researchers has a nearly 100-fold difference in toxicity to cancer cells vs. healthy cells, meaning it takes 100 times more of the compound to kill a healthy cell than it does to kill a cancer cell.

“Very small changes that may seem insignificant can have dramatic effects on these toxicity properties,” Fuchs said. “But most of the compounds we’ve made have been more potent than curcumin against the cancer cells.”

The computer-based predictions have suggested that the most effective compound developed to date can interact with proteins believed to be active in about 50 percent of all breast and prostate cancers.

“To be able to develop a drug that in the future could have potential to treat 50 percent of these cancers would be a major contribution,” said Jiayuh Lin, an investigator in Ohio State’s Comprehensive Cancer Center and an associate professor of pediatrics. Lin tests the experimental compounds in different types of breast and prostate cancer cell lines. He said some of the compounds also show potential to kill pancreatic cancer cells and inhibit cancer cell migration.

The computer-aided design also offers hints at the compounds’ suitability as the basis for a drug, such as whether the molecules will remain stable during metabolism and whether they will maintain a structure that the body can absorb into the bloodstream and tissues. The team is planning to continue refining the compounds before advancing to animal studies to test their effectiveness. The scientists hope to develop a chemotherapeutic agent available in pill form.

Additional members of the research group, dubbed the OSU Molecular Target Team, are Pui-Kai Li, chair and associate professor, and graduate students Jonathan Etter, Dalia Abdelhamid, Nicholas Regan, Deepak Bhasin, Bulbul Pandit and Katryna Cisek, all of Ohio State’s Division of Medicinal Chemistry and Pharmacognosy; and Ling Cen, Li Lin and Brian Hutzen of the Center for Childhood Cancer in the Research Institute at Nationwide Children’s Hospital in Columbus.

This work is supported by the Department of Defense Prostate Cancer Research Program, the James S. McDonnell Foundation, the National Foundation for Cancer Research, Ohio State’s Comprehensive Cancer Center and Ohio State’s College of Pharmacy.

Contact: James Fuchs,
(614) 247-7377;
(614) 247-8786;
Fuchs.42@osu.edu or Chenglong Li,
cli@pharmacy.ohio-state.edu

James Fuchs | Newswise Science News
Further information:
http://www.ohio-state.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>