Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synthetic lethality: A new way to kill cancer cells

23.02.2010
Ovarian and breast cancer treatments being developed that mix a protein inhibitor and traditional anticancer drugs are showing signs of success, according to a new review for Faculty of 1000 Biology Reports.

Susan Bates and Christina Annunziata looked at several recent papers on this form of treatment, which takes advantage of the synthetic lethality of BRCA (breast cancer susceptibility genes) and poly-ADP ribose polymerase (PARP) proteins to attack cancerous cells whilst sparing healthy ones.

BRCA and PARP are two key players in DNA repair and have different but complementary functions in the cell. Loss of the BRCA protein still allows the cell to survive but greatly increases its chances of becoming cancerous through the accumulation of mutations. The loss of both proteins, however, kills the cell in a process called synthetic lethality.

Researchers, by using drugs to block the activity of PARP in cells missing BRCA, such as those found in certain breast and ovarian cancers, can help spare healthy, non-cancerous cells because they have functional BRCA and are not affected by the loss of PARP. Thus, only cancer cells without functional BRCA protein are killed by drugs that inhibit PARP.

Recent clinical trials have shown that cancers caused by mutations that knock out BRCA activity can be controlled by blocking PARP activity with specific drugs. Patients were treated with traditional anticancer drugs alone or in combination with one of two new PARP inhibitors, olaparib or BSI-201.

Bates notes that patients on combination therapy had improved "[disease] progression-free survival, and overall survival" as compared to patients treated with traditional drugs alone.

Bates is optimistic about the promise of combining PARP inhibitors with existing cancer drugs. She says that the results of these clinical trials "have provided proof of principle in achieving synthetic lethality" with PARP-inhibiting drugs and that treatments combining novel PARP inhibitors with traditional chemotherapeutic drugs have the potential to vanquish BRCA-associated breast and ovarian cancers.

1. Synthetic lethality is a concept in which blocking the activity of two proteins leads to cell death, but inhibition of either alone does not

2. Susan Bates, Faculty Member for Faculty of 1000 Biology, is the head of Molecular Therapeutics Section at the National Cancer Institute in Bethesda, Maryland http://f1000biology.com/about/biography/1203890420334349

3. The full text of this article is available for subscribers at http://f1000biology.com/reports/10.3410/B2-10/ or for reporters at http://faculty1000.files.wordpress.com/2010/02/bates-report.pdf

4. F1000 Biology Reports (ISSN 1757-594X) publishes short commentaries by the world's top scientists in which the hottest biology papers/clusters of papers identified by Faculty of 1000 are put into a broader context http://f1000biology.com/reports

5. Faculty of 1000 Biology, http://f1000biology.com, is a unique online service that helps scientists stay informed. Its distinguished international faculty of over 5000 top researchers elect, evaluate and provide opinion on key articles across the life sciences, creating an authoritative guide to the literature that matters

6. Please contact Steve Pogonowski, PR Manager, for a complimentary journalist subscription to Faculty of 1000 – press@f1000.com

Media Contact
Steve Pogonowski
Public Relations Manager
Faculty of 1000
press@f1000.com
http://blog.f1000.com
http://twitter.com/f1000
http://youtube.com/Facultyof1000

Steve Pogonowski | EurekAlert!
Further information:
http://www.f1000.com

More articles from Life Sciences:

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

nachricht Warming temperatures threaten sea turtles
22.06.2017 | Swansea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

New 3-D display takes the eye fatigue out of virtual reality

22.06.2017 | Information Technology

New technique makes brain scans better

22.06.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>