Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synthetic lethality: A new way to kill cancer cells

23.02.2010
Ovarian and breast cancer treatments being developed that mix a protein inhibitor and traditional anticancer drugs are showing signs of success, according to a new review for Faculty of 1000 Biology Reports.

Susan Bates and Christina Annunziata looked at several recent papers on this form of treatment, which takes advantage of the synthetic lethality of BRCA (breast cancer susceptibility genes) and poly-ADP ribose polymerase (PARP) proteins to attack cancerous cells whilst sparing healthy ones.

BRCA and PARP are two key players in DNA repair and have different but complementary functions in the cell. Loss of the BRCA protein still allows the cell to survive but greatly increases its chances of becoming cancerous through the accumulation of mutations. The loss of both proteins, however, kills the cell in a process called synthetic lethality.

Researchers, by using drugs to block the activity of PARP in cells missing BRCA, such as those found in certain breast and ovarian cancers, can help spare healthy, non-cancerous cells because they have functional BRCA and are not affected by the loss of PARP. Thus, only cancer cells without functional BRCA protein are killed by drugs that inhibit PARP.

Recent clinical trials have shown that cancers caused by mutations that knock out BRCA activity can be controlled by blocking PARP activity with specific drugs. Patients were treated with traditional anticancer drugs alone or in combination with one of two new PARP inhibitors, olaparib or BSI-201.

Bates notes that patients on combination therapy had improved "[disease] progression-free survival, and overall survival" as compared to patients treated with traditional drugs alone.

Bates is optimistic about the promise of combining PARP inhibitors with existing cancer drugs. She says that the results of these clinical trials "have provided proof of principle in achieving synthetic lethality" with PARP-inhibiting drugs and that treatments combining novel PARP inhibitors with traditional chemotherapeutic drugs have the potential to vanquish BRCA-associated breast and ovarian cancers.

1. Synthetic lethality is a concept in which blocking the activity of two proteins leads to cell death, but inhibition of either alone does not

2. Susan Bates, Faculty Member for Faculty of 1000 Biology, is the head of Molecular Therapeutics Section at the National Cancer Institute in Bethesda, Maryland http://f1000biology.com/about/biography/1203890420334349

3. The full text of this article is available for subscribers at http://f1000biology.com/reports/10.3410/B2-10/ or for reporters at http://faculty1000.files.wordpress.com/2010/02/bates-report.pdf

4. F1000 Biology Reports (ISSN 1757-594X) publishes short commentaries by the world's top scientists in which the hottest biology papers/clusters of papers identified by Faculty of 1000 are put into a broader context http://f1000biology.com/reports

5. Faculty of 1000 Biology, http://f1000biology.com, is a unique online service that helps scientists stay informed. Its distinguished international faculty of over 5000 top researchers elect, evaluate and provide opinion on key articles across the life sciences, creating an authoritative guide to the literature that matters

6. Please contact Steve Pogonowski, PR Manager, for a complimentary journalist subscription to Faculty of 1000 – press@f1000.com

Media Contact
Steve Pogonowski
Public Relations Manager
Faculty of 1000
press@f1000.com
http://blog.f1000.com
http://twitter.com/f1000
http://youtube.com/Facultyof1000

Steve Pogonowski | EurekAlert!
Further information:
http://www.f1000.com

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>