Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synthetic HDL: A new weapon to fight cholesterol problems

13.01.2009
Buttery Christmas cookies, eggnog, juicy beef roast, rich gravy and creamy New York-style cheesecake. Happy holiday food unfortunately can send blood cholesterol levels sky high.

Northwestern University scientists now offer a promising new weapon -- synthetic high-density lipoprotein (HDL), the "good" cholesterol -- that could help fight chronically high cholesterol levels and the deadly heart disease that often results.

The researchers successfully designed synthetic HDL and show that their nanoparticle version is capable of irreversibly binding cholesterol. The synthetic HDL, based on gold nanoparticles, is similar in size to HDL and mimics HDL's general surface composition.

The study is published online by the Journal of the American Chemical Society (JACS).

"We have designed and built a cholesterol sponge. The synthetic HDL features the basics of what a great cholesterol drug should be," said Chad A. Mirkin, George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences, professor of medicine and professor of materials science and engineering. Mirkin and Shad Thaxton, M.D., assistant professor of urology in Northwestern's Feinberg School of Medicine, led the study.

"Drugs that lower the bad cholesterol, LDL, are available, and you can lower LDL through your diet, but it is difficult to raise the good cholesterol, HDL," said Mirkin. "I've taken niacin to try and raise my HDL, but the side effects are bad so I stopped. We are hopeful that our synthetic HDL will one day help fill this gap in useful therapeutics."

In creating synthetic HDL the researchers started with a gold nanoparticle as the core. They then layered on a lipid that attaches to the gold surface, then another lipid and last a protein, called APOA1, the main protein component of naturally occurring HDL. The final high-density lipoprotein nanoparticles are each about 18 nanometers in diameter, a size similar to natural HDL.

"Cholesterol is essential to our cells, but chronic excess can lead to dangerous plaque formation in our arteries," said Thaxton. "HDL transports cholesterol to the liver, which protects against atherosclerosis. Our hope is that, with further development, our synthetic form of HDL could be used to increase HDL levels and promote better health."

"HDL is a natural nanoparticle, and we've successfully mimicked it," said Mirkin, director of Northwestern's International Institute for Nanotechnology. "Gold is an ideal scaffolding material -- it's size and shape can be tailored, and it can be easily functionalized. Using gold nanoparticles, which are non-toxic, for synthetic HDL bodes well for the development of a new therapeutic."

The development of synthetic HDL is a result of a successful collaboration between scientists in Northwestern's department of chemistry and the Feinberg School. Bringing these two groups together, says Mirkin, should lead to major advances in translational research. Their next step is to further study the synthetic HDL in biologically relevant conditions and measure and evaluate the cholesterol-binding properties.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Can we see monkeys from space? Emerging technologies to map biodiversity

23.06.2017 | Information Technology

Understanding animal social networks can aid wildlife conservation

23.06.2017 | Ecology, The Environment and Conservation

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>