Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Synthesis with a Template

Carbon-free fullerene analogue

The discovery of a soccer-ball-shaped molecule made of 60 carbon atoms was a minor revolution in chemistry: Fullerenes are spherical, highly symmetrical molecules made of carbon atoms, and are the third form of carbon after diamond and graphite.

However, the C60 “soccer ball” is not the only fullerene by far. Among its less stable relations is the C80 fullerene. There are seven different possible structural forms that have 80 carbon atoms in a symmetrical, spherical arrangement. Among the forms that are so instable they have not previously been produced is the icosahedral version (icosahedron= twenty-sided figure).

Instead, a team led by Manfred Scheer at the University of Regensburg has now synthesized the first example of an inorganic, carbon-free C80 analogue. As they report in the journal Angewandte Chemie, their fullerene-type system of building blocks can be produced by using a template (template-controlled aggregation).

The researchers used pentaphosphaferrocene (a five-membered ring made of phosphorus atoms bound to an iron atom) and copper chloride for their synthesis. Their template was a carborane—a compound made of carbon, boron, and hydrogen atoms—of the appropriate size (ca. 0.8 nm) and shape (pseudo five-fold symmetry). The individual building blocks aggregate around the carborane to form a spherical supermolecule with fullerene-type geometry, enclosing the carborane within the structure as a “guest molecule”. This gave the scientists a structure that corresponds to an icosahedral fullerene made of 80 carbon atoms. This scaffold is made of twenty copper and sixty phosphorus atoms that are arranged into twelve rings containing five phosphorus atoms each and 30 six-membered rings containing two copper and four phosphorus atoms. This inorganic shell interacts electronically with the enclosed guest molecule.

“Template-controlled aggregation has been shown to be an efficient route to large, entirely spherical molecules of fullerene-type topology,” says Scheer. “The guest molecule determines the size and composition of the fullerene-type product.”

Author: Manfred Scheer, Universität Regensburg (Germany),

Title: A Carbon-Free Icosahedral Molecule with C80 Topology

Angewandte Chemie International Edition, doi: 10.1002/anie.200900342

Manfred Scheer | Angewandte Chemie
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>