Synthesis with a Template

The discovery of a soccer-ball-shaped molecule made of 60 carbon atoms was a minor revolution in chemistry: Fullerenes are spherical, highly symmetrical molecules made of carbon atoms, and are the third form of carbon after diamond and graphite.

However, the C60 “soccer ball” is not the only fullerene by far. Among its less stable relations is the C80 fullerene. There are seven different possible structural forms that have 80 carbon atoms in a symmetrical, spherical arrangement. Among the forms that are so instable they have not previously been produced is the icosahedral version (icosahedron= twenty-sided figure).

Instead, a team led by Manfred Scheer at the University of Regensburg has now synthesized the first example of an inorganic, carbon-free C80 analogue. As they report in the journal Angewandte Chemie, their fullerene-type system of building blocks can be produced by using a template (template-controlled aggregation).

The researchers used pentaphosphaferrocene (a five-membered ring made of phosphorus atoms bound to an iron atom) and copper chloride for their synthesis. Their template was a carborane—a compound made of carbon, boron, and hydrogen atoms—of the appropriate size (ca. 0.8 nm) and shape (pseudo five-fold symmetry). The individual building blocks aggregate around the carborane to form a spherical supermolecule with fullerene-type geometry, enclosing the carborane within the structure as a “guest molecule”. This gave the scientists a structure that corresponds to an icosahedral fullerene made of 80 carbon atoms. This scaffold is made of twenty copper and sixty phosphorus atoms that are arranged into twelve rings containing five phosphorus atoms each and 30 six-membered rings containing two copper and four phosphorus atoms. This inorganic shell interacts electronically with the enclosed guest molecule.

“Template-controlled aggregation has been shown to be an efficient route to large, entirely spherical molecules of fullerene-type topology,” says Scheer. “The guest molecule determines the size and composition of the fullerene-type product.”

Author: Manfred Scheer, Universität Regensburg (Germany), http://www.chemie.uni-regensburg.de/Anorganische_Chemie/Scheer/scheer.html

Title: A Carbon-Free Icosahedral Molecule with C80 Topology

Angewandte Chemie International Edition, doi: 10.1002/anie.200900342

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors