Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Down syndrome neurons grown from stem cells show signature problems

28.05.2013
Down syndrome, the most common genetic form of intellectual disability, results from an extra copy of one chromosome.

Although people with Down syndrome experience intellectual difficulties and other problems, scientists have had trouble identifying why that extra chromosome causes such widespread effects.

In new research published this week, Anita Bhattacharyya, a neuroscientist at the Waisman Center at the University of Wisconsin-Madison, reports on brain cells that were grown from skin cells of individuals with Down syndrome.

"Even though Down syndrome is very common, it's surprising how little we know about what goes wrong in the brain," says Bhattacharyya. "These new cells provide a way to look at early brain development."

The study began when those skin cells were transformed into induced pluripotent stem cells, which can be grown into any type of specialized cell. Bhattacharyya's lab, working with Su-Chun Zhang and Jason Weick, then grew those stem cells into brain cells that could be studied in the lab.

One significant finding was a reduction in connections among the neurons, Bhattacharyya says. "They communicate less, are quieter. This is new, but it fits with what little we know about the Down syndrome brain." Brain cells communicate through connections called synapses, and the Down neurons had only about 60 percent of the usual number of synapses and synaptic activity. "This is enough to make a difference," says Bhattacharyya. "Even if they recovered these synapses later on, you have missed this critical window of time during early development."

The researchers looked at genes that were affected in the Down syndrome stem cells and neurons, and found that genes on the extra chromosome were increased 150 percent, consistent with the contribution of the extra chromosome.

However, the output of about 1,500 genes elsewhere in the genome was strongly affected. "It's not surprising to see changes, but the genes that changed were surprising," says Bhattacharyya. The predominant increase was seen in genes that respond to oxidative stress, which occurs when molecular fragments called free radicals damage a wide variety of tissues.

"We definitely found a high level of oxidative stress in the Down syndrome neurons," says Bhattacharyya. "This has been suggested before from other studies, but we were pleased to find more evidence for that. We now have a system we can manipulate to study the effects of oxidative stress and possibly prevent them."

Down syndrome includes a range of symptoms that could result from oxidative stress, Bhattacharyya says, including accelerated aging. "In their 40s, Down syndrome individuals age very quickly. They suddenly get gray hair; their skin wrinkles, there is rapid aging in many organs, and a quick appearance of Alzheimer's disease. Many of these processes may be due to increased oxidative stress, but it remains to be directly tested."

Oxidative stress could be especially significant, because it appears right from the start in the stem cells. "This suggests that these cells go through their whole life with oxidative stress," Bhattacharyya adds, "and that might contribute to the death of neurons later on, or increase susceptibility to Alzheimer's."

Other researchers have created neurons with Down syndrome from induced pluripotent stem cells, Bhattacharyya notes. "However, we are the first to report this synaptic deficit, and to report the effects on genes on other chromosomes in neurons. We are also the first to use stem cells from the same person that either had or lacked the extra chromosome. This allowed us to look at the difference just caused by extra chromosome, not due to the genetic difference among people."

The research, published the week of May 27 in the Proceedings of the National Academy of Sciences, was a basic exploration of the roots of Down syndrome. Bhattacharyya says that while she did not intend to explore treatments in the short term, "we could potentially use these cells to test or intelligently design drugs to target symptoms of Down syndrome."

David Tenenbaum, 608-265-8549, djtenenb@wisc.edu

Anita Bhattacharyya | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>