Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synapses – stability in transformation

17.04.2014

Synapses remain stable if their components grow in coordination with each other

Synapses are the points of contact at which information is transmitted between neurons. Without them, we would not be able to form thoughts or remember things. For memories to endure, synapses sometimes have to remain stable for very long periods.


During the learning processes, extensions grow on neurons. Synapses are located at the end of these extensions (left: as seen in nature; right: reconstruction). When the synapse growth is based on the correlated development of all synaptic components, it can remain stable for long periods of time.

© MPI of Neurobiology/ Meyer

But how can a synapse last if its components have to be replaced regularly? Scientists from the Max Planck Institute of Neurobiology in Martinsried near Munich have taken a decisive step towards answering this question. They have succeeded in demonstrating that when a synapse is formed, all of the components must grow in a coordinated way.

This is the only way that a long-term functioning synapse, –the basic prerequisite of learning and memory processes, can be formed. This kind of interactive system must allow for the replacement of individual molecules while the other components stabilise the synapse.

Nothing lasts forever. This principle also applies to the proteins that make up the points of contact between our neurons. It is due to these proteins that the information arriving at a synapse can be transmitted and then received by the next neuron. When we learn something, new synapses are created or existing ones are strengthened. To enable us to retain long-term memories, synapses must remain stable for long periods of time, up to an entire lifetime. Researchers at the Max Planck Institute of Neurobiology in Martinsried near Munich have found an explanation as to how a synapse achieves remaining stable for a long time despite the fact that its proteins must be renewed regularly.

Learning in the laboratory

“We were interested first of all in what happens to the different components of a synapse when it grows during a learning process,” explains study leader Volker Scheuss. An understanding of how the components grow could also provide information about the long-term stability of synapses. Hence, the researchers studied the growth of synapses in tissue culture dishes following exposure to a (learning) stimulus. To do this, they deliberately activated individual synapses using the neurotransmitter glutamate: scientists have long known that glutamate plays an important role in learning processes and stimulates the growth of synapses. Over the following hours, the researchers observed the stimulated synapses and control synapses under a 2-photon microscope. To confirm the observed effects, they then examined individual synapses with the help of an electron microscope. “When you consider that individual synapses are only around one thousandth of a millimetre in size, this was quite a Sisyphean task,” says Tobias Bonhoeffer, the Director of the department where the research was carried out.

Synaptic stability – a concerted effort

The scientists discovered that during synapse growth the different protein structures always grew coordinated with each other. If one structural component was enlarged alone, or in a way that was not correctly correlated with the other components, its structural change would collapse soon after. Synapses with such incomplete changes cannot store any long-term memories.

The study findings show that the order and interaction between synaptic components is finely tuned and correlated. “In a system of this kind, it should be entirely possible to replace individual proteins while the rest of the structure maintains its integrity,” says Scheuss. However, if an entire group of components breaks away, the synapse is destabilised. This is also an important process given that the brain could not function correctly without the capacity to forget things. Hence, the study’s results provide not only important insight into the functioning and structure of synapses, they also establish a basis for a better understanding of memory loss, for example in the case of degenerative brain diseases.

Contact 

Dr. Stefanie Merker

Max Planck Institute of Neurobiology, Martinsried

Phone: +49 89 8578-3514

 

Prof. Dr. Tobias Bonhoeffer

Max Planck Institute of Neurobiology, Martinsried

Phone: +49 89 8578-3751
Fax: +49 89 8578-2481

Email:tobias.bonhoeffer@neuro.mpg.de

Dr. Volker Scheuss

Original publication

 
Daniel Meyer, Tobias Bonhoeffer, Volker Scheuss
Balance and stability of synaptic structures during synaptic plasticity
Neuron, 16 April 2014

Dr. Stefanie Merker | Max-Planck-Institute

Further reports about: Learning Neurobiology Phone glutamate long-term memories neurons proteins synapses synaptic

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>