Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synapses – stability in transformation

17.04.2014

Synapses remain stable if their components grow in coordination with each other

Synapses are the points of contact at which information is transmitted between neurons. Without them, we would not be able to form thoughts or remember things. For memories to endure, synapses sometimes have to remain stable for very long periods.


During the learning processes, extensions grow on neurons. Synapses are located at the end of these extensions (left: as seen in nature; right: reconstruction). When the synapse growth is based on the correlated development of all synaptic components, it can remain stable for long periods of time.

© MPI of Neurobiology/ Meyer

But how can a synapse last if its components have to be replaced regularly? Scientists from the Max Planck Institute of Neurobiology in Martinsried near Munich have taken a decisive step towards answering this question. They have succeeded in demonstrating that when a synapse is formed, all of the components must grow in a coordinated way.

This is the only way that a long-term functioning synapse, –the basic prerequisite of learning and memory processes, can be formed. This kind of interactive system must allow for the replacement of individual molecules while the other components stabilise the synapse.

Nothing lasts forever. This principle also applies to the proteins that make up the points of contact between our neurons. It is due to these proteins that the information arriving at a synapse can be transmitted and then received by the next neuron. When we learn something, new synapses are created or existing ones are strengthened. To enable us to retain long-term memories, synapses must remain stable for long periods of time, up to an entire lifetime. Researchers at the Max Planck Institute of Neurobiology in Martinsried near Munich have found an explanation as to how a synapse achieves remaining stable for a long time despite the fact that its proteins must be renewed regularly.

Learning in the laboratory

“We were interested first of all in what happens to the different components of a synapse when it grows during a learning process,” explains study leader Volker Scheuss. An understanding of how the components grow could also provide information about the long-term stability of synapses. Hence, the researchers studied the growth of synapses in tissue culture dishes following exposure to a (learning) stimulus. To do this, they deliberately activated individual synapses using the neurotransmitter glutamate: scientists have long known that glutamate plays an important role in learning processes and stimulates the growth of synapses. Over the following hours, the researchers observed the stimulated synapses and control synapses under a 2-photon microscope. To confirm the observed effects, they then examined individual synapses with the help of an electron microscope. “When you consider that individual synapses are only around one thousandth of a millimetre in size, this was quite a Sisyphean task,” says Tobias Bonhoeffer, the Director of the department where the research was carried out.

Synaptic stability – a concerted effort

The scientists discovered that during synapse growth the different protein structures always grew coordinated with each other. If one structural component was enlarged alone, or in a way that was not correctly correlated with the other components, its structural change would collapse soon after. Synapses with such incomplete changes cannot store any long-term memories.

The study findings show that the order and interaction between synaptic components is finely tuned and correlated. “In a system of this kind, it should be entirely possible to replace individual proteins while the rest of the structure maintains its integrity,” says Scheuss. However, if an entire group of components breaks away, the synapse is destabilised. This is also an important process given that the brain could not function correctly without the capacity to forget things. Hence, the study’s results provide not only important insight into the functioning and structure of synapses, they also establish a basis for a better understanding of memory loss, for example in the case of degenerative brain diseases.

Contact 

Dr. Stefanie Merker

Max Planck Institute of Neurobiology, Martinsried

Phone: +49 89 8578-3514

 

Prof. Dr. Tobias Bonhoeffer

Max Planck Institute of Neurobiology, Martinsried

Phone: +49 89 8578-3751
Fax: +49 89 8578-2481

Email:tobias.bonhoeffer@neuro.mpg.de

Dr. Volker Scheuss

Original publication

 
Daniel Meyer, Tobias Bonhoeffer, Volker Scheuss
Balance and stability of synaptic structures during synaptic plasticity
Neuron, 16 April 2014

Dr. Stefanie Merker | Max-Planck-Institute

Further reports about: Learning Neurobiology Phone glutamate long-term memories neurons proteins synapses synaptic

More articles from Life Sciences:

nachricht Rice study decodes genetic circuitry for bacterial spore formation
24.05.2016 | Rice University

nachricht How Neural Circuits Implement Natural Vision
24.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

Im Focus: Trojan horses for hospital bugs

Staphylococcus aureus usually is a formidable bacterial pathogen. Sometimes, however, weakened forms are found in the blood of patients. Researchers of the University of Würzburg have now identified one mutation responsible for that phenomenon.

Staphylococcus aureus is a bacterium that is frequently found on the human skin and in the nose where it usually behaves inconspicuously. However, once inside...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Rutgers scientists help create world's largest coral gene database

24.05.2016 | Earth Sciences

New technique controls autonomous vehicles on a dirt track

24.05.2016 | Information Technology

Programmable materials find strength in molecular repetition

24.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>