Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synapses – stability in transformation

17.04.2014

Synapses remain stable if their components grow in coordination with each other

Synapses are the points of contact at which information is transmitted between neurons. Without them, we would not be able to form thoughts or remember things. For memories to endure, synapses sometimes have to remain stable for very long periods.


During the learning processes, extensions grow on neurons. Synapses are located at the end of these extensions (left: as seen in nature; right: reconstruction). When the synapse growth is based on the correlated development of all synaptic components, it can remain stable for long periods of time.

© MPI of Neurobiology/ Meyer

But how can a synapse last if its components have to be replaced regularly? Scientists from the Max Planck Institute of Neurobiology in Martinsried near Munich have taken a decisive step towards answering this question. They have succeeded in demonstrating that when a synapse is formed, all of the components must grow in a coordinated way.

This is the only way that a long-term functioning synapse, –the basic prerequisite of learning and memory processes, can be formed. This kind of interactive system must allow for the replacement of individual molecules while the other components stabilise the synapse.

Nothing lasts forever. This principle also applies to the proteins that make up the points of contact between our neurons. It is due to these proteins that the information arriving at a synapse can be transmitted and then received by the next neuron. When we learn something, new synapses are created or existing ones are strengthened. To enable us to retain long-term memories, synapses must remain stable for long periods of time, up to an entire lifetime. Researchers at the Max Planck Institute of Neurobiology in Martinsried near Munich have found an explanation as to how a synapse achieves remaining stable for a long time despite the fact that its proteins must be renewed regularly.

Learning in the laboratory

“We were interested first of all in what happens to the different components of a synapse when it grows during a learning process,” explains study leader Volker Scheuss. An understanding of how the components grow could also provide information about the long-term stability of synapses. Hence, the researchers studied the growth of synapses in tissue culture dishes following exposure to a (learning) stimulus. To do this, they deliberately activated individual synapses using the neurotransmitter glutamate: scientists have long known that glutamate plays an important role in learning processes and stimulates the growth of synapses. Over the following hours, the researchers observed the stimulated synapses and control synapses under a 2-photon microscope. To confirm the observed effects, they then examined individual synapses with the help of an electron microscope. “When you consider that individual synapses are only around one thousandth of a millimetre in size, this was quite a Sisyphean task,” says Tobias Bonhoeffer, the Director of the department where the research was carried out.

Synaptic stability – a concerted effort

The scientists discovered that during synapse growth the different protein structures always grew coordinated with each other. If one structural component was enlarged alone, or in a way that was not correctly correlated with the other components, its structural change would collapse soon after. Synapses with such incomplete changes cannot store any long-term memories.

The study findings show that the order and interaction between synaptic components is finely tuned and correlated. “In a system of this kind, it should be entirely possible to replace individual proteins while the rest of the structure maintains its integrity,” says Scheuss. However, if an entire group of components breaks away, the synapse is destabilised. This is also an important process given that the brain could not function correctly without the capacity to forget things. Hence, the study’s results provide not only important insight into the functioning and structure of synapses, they also establish a basis for a better understanding of memory loss, for example in the case of degenerative brain diseases.

Contact 

Dr. Stefanie Merker

Max Planck Institute of Neurobiology, Martinsried

Phone: +49 89 8578-3514

 

Prof. Dr. Tobias Bonhoeffer

Max Planck Institute of Neurobiology, Martinsried

Phone: +49 89 8578-3751
Fax: +49 89 8578-2481

Email:tobias.bonhoeffer@neuro.mpg.de

Dr. Volker Scheuss

Original publication

 
Daniel Meyer, Tobias Bonhoeffer, Volker Scheuss
Balance and stability of synaptic structures during synaptic plasticity
Neuron, 16 April 2014

Dr. Stefanie Merker | Max-Planck-Institute

Further reports about: Learning Neurobiology Phone glutamate long-term memories neurons proteins synapses synaptic

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

For a chimpanzee, one good turn deserves another

27.06.2017 | Life Sciences

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>