Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What are the causes of synapse failure in Alzheimer's disease?

29.02.2012
Prof. Jochen Herms heads a new research group at the German Center for Neurodegenerative Diseases (DZNE) and holds a professorship at the Ludwig-Maximilians-Universität in Munich. He studies the cellular basis of neurodegenerative diseases with advanced microscopy technologies.

The degeneration of synapses – the contact sites between nerve cells – is considered to be the main cause of neurodegenerative diseases like Alzheimer's, Parkinson's or prion diseases. As head of a new research group at the German Center for Neurodegenerative Diseases (DZNE), Professor Jochen Herms investigates why synapses degenerate and what can be done to impede the process. Herms also holds the chair "Translational Research in the Field of Neurodegeneration" at the Ludwig-Maximilians-Universität in Munich.

What are the proteins involved in the degradation of synapses? Which cellular changes take place and which drugs may counteract the degenerative process? To answer these questions Herms and his colleagues have specialized on long-term in vivo two-photon microscopy. This method makes it possible to monitor structural changes at synapses in the mouse brain for a period of weeks or months. "This is much more sensitive than observing the behavior of animals. In addition, drawing a parallel to the human diseases is far more straight forward, at least if one assumes synaptic failure as primary cause of neurodegenerative diseases," says Herms.

Recently Herms made the headlines with an approach to developing a new method for early detection and therapy control of Alzheimer's disease. This method aims to detect tau aggregates – protein structures that accumulate in the central nervous system in Alzheimer's disease – in the retina of the eye. Currently, the researchers are still testing the method in animal models. But if the process turns out to be applicable to humans it would be possible to develop new diagnostic tools for Alzheimer’s disease. "Early diagnosis of Alzheimer's is very important because the disease begins long before the first symptoms appear. An effective therapy against Alzheimer's disease has not yet been established and this can most likely be attributed to the fact that in previous clinical studies, therapy started too late," Herms explains.

Herms is very enthusiastic about his appointment with DZNE. "We will only advance in Alzheimer research if we critically bring into question common assumptions and develop new hypotheses. The strong support we receive at DZNE and the critical mass of scientists at DZNE provide us with the right environment required to achieve this goal," he says. At the DZNE, Herms will focus entirely on doing basic research. In this undertaking, he will strongly profit from his medical background and profound knowledge in neuropathology: "Having a clear picture of the disease in humans helps a lot to better assess the relevance of certain observations in animal models," says Herms.

Jochen Herms studied medicine, received his MD from the University Medical Center Hamburg-Eppendorf and then worked at the Max Planck Institute for Biophysical Chemistry in Göttingen in the lab of Otto Creutzfeldt. Afterwards he specialized in neuropathology at the University Göttingen and completed his habilitation on the function of the prion protein in neurons in 1999. Since 2001 he has been professor of neuropathology at the Ludwig-Maximilians-Universität in Munich (LMU), where he was appointed Chair of Translational Research in the Field of Neurodegeneration and joined DZNE in 2011.

Contact information:
Prof. Dr. Jochen Herms
German Center for Neurodegenerative Diseases (DZNE)
Ludwig-Maximilians-Universität Munich
Centre for Neuropathology
Feodor-Lynen Str. 23
81377 Munich
Email: jochen.herms(at)dzne.de
Tel.: +49 (0) 89 / 2180-78010
Daniel Bayer
German Center for Neurodegenerative Diseases (DZNE)
Press- and Public Relations
Email: daniel.bayer(at)dzne.de
Tel: +49 (0) 228 43302 /261

Daniel Bayer | idw
Further information:
http://bit.ly/herms_group
http://www.dzne.de

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>