Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What are the causes of synapse failure in Alzheimer's disease?

29.02.2012
Prof. Jochen Herms heads a new research group at the German Center for Neurodegenerative Diseases (DZNE) and holds a professorship at the Ludwig-Maximilians-Universität in Munich. He studies the cellular basis of neurodegenerative diseases with advanced microscopy technologies.

The degeneration of synapses – the contact sites between nerve cells – is considered to be the main cause of neurodegenerative diseases like Alzheimer's, Parkinson's or prion diseases. As head of a new research group at the German Center for Neurodegenerative Diseases (DZNE), Professor Jochen Herms investigates why synapses degenerate and what can be done to impede the process. Herms also holds the chair "Translational Research in the Field of Neurodegeneration" at the Ludwig-Maximilians-Universität in Munich.

What are the proteins involved in the degradation of synapses? Which cellular changes take place and which drugs may counteract the degenerative process? To answer these questions Herms and his colleagues have specialized on long-term in vivo two-photon microscopy. This method makes it possible to monitor structural changes at synapses in the mouse brain for a period of weeks or months. "This is much more sensitive than observing the behavior of animals. In addition, drawing a parallel to the human diseases is far more straight forward, at least if one assumes synaptic failure as primary cause of neurodegenerative diseases," says Herms.

Recently Herms made the headlines with an approach to developing a new method for early detection and therapy control of Alzheimer's disease. This method aims to detect tau aggregates – protein structures that accumulate in the central nervous system in Alzheimer's disease – in the retina of the eye. Currently, the researchers are still testing the method in animal models. But if the process turns out to be applicable to humans it would be possible to develop new diagnostic tools for Alzheimer’s disease. "Early diagnosis of Alzheimer's is very important because the disease begins long before the first symptoms appear. An effective therapy against Alzheimer's disease has not yet been established and this can most likely be attributed to the fact that in previous clinical studies, therapy started too late," Herms explains.

Herms is very enthusiastic about his appointment with DZNE. "We will only advance in Alzheimer research if we critically bring into question common assumptions and develop new hypotheses. The strong support we receive at DZNE and the critical mass of scientists at DZNE provide us with the right environment required to achieve this goal," he says. At the DZNE, Herms will focus entirely on doing basic research. In this undertaking, he will strongly profit from his medical background and profound knowledge in neuropathology: "Having a clear picture of the disease in humans helps a lot to better assess the relevance of certain observations in animal models," says Herms.

Jochen Herms studied medicine, received his MD from the University Medical Center Hamburg-Eppendorf and then worked at the Max Planck Institute for Biophysical Chemistry in Göttingen in the lab of Otto Creutzfeldt. Afterwards he specialized in neuropathology at the University Göttingen and completed his habilitation on the function of the prion protein in neurons in 1999. Since 2001 he has been professor of neuropathology at the Ludwig-Maximilians-Universität in Munich (LMU), where he was appointed Chair of Translational Research in the Field of Neurodegeneration and joined DZNE in 2011.

Contact information:
Prof. Dr. Jochen Herms
German Center for Neurodegenerative Diseases (DZNE)
Ludwig-Maximilians-Universität Munich
Centre for Neuropathology
Feodor-Lynen Str. 23
81377 Munich
Email: jochen.herms(at)dzne.de
Tel.: +49 (0) 89 / 2180-78010
Daniel Bayer
German Center for Neurodegenerative Diseases (DZNE)
Press- and Public Relations
Email: daniel.bayer(at)dzne.de
Tel: +49 (0) 228 43302 /261

Daniel Bayer | idw
Further information:
http://bit.ly/herms_group
http://www.dzne.de

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Morbid Obesity: Gastric Bypass and Sleeve Gastrectomy Are Comparable

17.01.2018 | Health and Medicine

Researchers identify new way to unmask melanoma cells to the immune system

17.01.2018 | Health and Medicine

Genetic discovery may help better identify children at risk for type 1 diabetes

17.01.2018 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>