Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Switching off anxiety with light

07.04.2014
  • RUB scientists couple cone opsins with serotonin receptors
  • Light-activated receptors for the analysis of intracellular signalling pathways

Nerve cells containing the light-activated 5-HT1A receptor (green) and the naturally occuring 5-HT1A receptor (red)

© RUB, Bild: Masseck

Receptors for the messenger molecule serotonin can be modified in such a way that they can be activated by light. Together with colleagues, neuroscientists from the Ruhr-Universität Bochum (RUB) report on this finding in the journal “Neuron”.

An imbalance in serotonin levels seems to cause anxiety and depression. The researchers have provided a new model system for investigating the mechanism underlying these dysfunctions in cell cultures as well as living organisms.

G protein coupled receptors play an important role in medicine and health

One receptor, which is important for the regulation of serotonin levels in the brain, is the 5-HT1A receptor. It belongs to a protein family called G protein coupled receptors (GPCRs). These receptors can activate different signalling pathways in cells to support or suppress various signalling events.

“About 30 per cent of the current drugs target specifically GPCRs”, says Prof Dr Stefan Herlitze from the Department of General Zoology and Neurobiology at the RUB. Due to the lack of tools to control intracellular signalling pathways with high temporal and spatial accuracy, it was so far difficult to analyse these pathways precisely.

Coupling of visual pigments to serotonin receptors

Applying optogenetic methods the scientists in Bochum used cone opsins from the mouse and human eye to control specifically serotonin signalling pathways either with blue or red light. Prof Dr Stefan Herlitze has been working with optogenetic techniques since 2005 and is one of the pioneers in the field. The light-activated serotonin receptors can be switched on within milliseconds, are extremely light sensitive in comparison to other optogenetic tools and can be repetitively activated. “We hope that with the help of these optogenetic tools, we will be able to gain a better understanding about how anxiety and depression originate”, states RUB neuroscientist Dr Olivia Masseck.

Successful behavioural tests

The scientists also demonstrated that they were able to modulate mouse emotional behaviour using the light-activated receptors. When they switched on the serotonergic signals by light in a certain brain area, the mice became less anxious.

Bibliographic record

O.A. Masseck, K. Spoida, D. Dalkara, T. Maejima, J.M. Rubelwoski, L. Wallhorn, E.S. Deneris, S. Herlitze (2014): Vertebrate cone opsins enable sustained and highly sensitive rapid control of Gi/o signaling in anxiety circuitry. Neuron, DOI: 10.1016/j.neuron.2014.01.041

Editorial journalist

Dr. Julia Weiler
Press Office Ruhr University Bochum

Dr. Olivia Masseck | EurekAlert!
Further information:
http://aktuell.ruhr-uni-bochum.de/pm2014/pm00046.html.en

Further reports about: Coupling GPCRs Neuron Switching anxiety neuroscientist pathways receptor sensitive signalling

More articles from Life Sciences:

nachricht From Termite Fumigant to Molecular Coupling
01.09.2014 | Angewandte Chemie International Edition

nachricht Tilapia fish: Ready for mating at the right time
01.09.2014 | Max Planck Institute for Chemical Ecology, Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

IT security in the digital society

27.08.2014 | Event News

Understanding the brain—neuroscientists meet in Göttingen

27.08.2014 | Event News

MEDICA EDUCATION CONFERENCE: Bessere Behandlung dank Biomarker

21.08.2014 | Event News

 
Latest News

Endangered Siamese Crocs Released in Wild

01.09.2014 | Ecology, The Environment and Conservation

Doing More with Less: New Technique Uses Fraction of Measurements to Efficiently Find Quantum Wave Functions

01.09.2014 | Physics and Astronomy

Simpler Process to Grow Germanium Nanowires Could Improve Lithium-Ion Batteries

01.09.2014 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>