Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Switching neurons

25.01.2010
Inhibitory neurons in the visual cortex of the brain exhibit a bidirectional form of plasticity after visual deprivation

If both eyes are open during mammalian development, pyramidal neurons in the visual cortex mature such that they ‘preferentially’ fire in response to the visual stimuli of one particular eye. If that eye is occluded during a critical period of development, the pyramidal neurons switch and fire in response to visual stimuli of the non-occluded eye. This leads to a loss of representation of the occluded eye in the visual cortex and the loss of visual acuity in that eye.

Pyramidal neurons receive inputs from so-called inhibitory interneurons within the visual cortex, but it has been unclear how the interneurons respond to visual deprivation, and what their role is in inducing this plasticity of pyramidal neuron response. Now, a team led by Takao Hensch at the RIKEN Brain Science Institute (BSI) in Wako, has reported that inhibitory neurons also change their responsiveness to visual stimuli after one eye is occluded1. Surprisingly, unlike pyramidal neurons, which have a unidirectional change in responsiveness—only towards the open eye—the inhibitory neurons have a bidirectional change: initially, they respond preferentially to stimuli presented to the occluded eye, but later, they switch their responsiveness to the open eye.

In mice in which both eyes were open, Hensch and colleagues found that blocking the signals going from the inhibitory neurons to the pyramidal neurons caused the pyramidal neurons to lose their selective responsiveness to one eye. When they occluded one eye, blocking the inhibitory neuron signals caused the pyramidal neurons to flip their responsiveness from one eye to the other. This indicates that the signals sent from the inhibitory neurons to the pyramidal neurons help to control the response of pyramidal neurons to both normal vision and visual deprivation.

After the researchers determined how the neurons would react to changes in visual stimulation, they developed a network model to understand how connectivity between neurons—and the plasticity of these connections—would explain the responses of the pyramidal neurons and the inhibitory interneurons. The model, developed in collaboration with Tomoki Fukai and team also at BSI, demonstrates how individual components of a neuronal cell circuit contribute to plasticity within the brain.

“We will now pursue the detailed mechanisms of this plasticity to determine sites for therapeutic interventions,” says Hensch. Understanding how this cell type determines early brain plasticity offers the potential for cell-specific strategies to restore or reactivate proper brain function in several neurological disorders such as autism and schizophrenia.

The corresponding author for this highlight is based at the Laboratory for Neuronal Circuit Development, RIKEN Brain Science Institute

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6163
http://www.researchsea.com

Further reports about: BSI Brain RIKEN Switching pyramidal neurons visual cortex visual deprivation

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>