Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Switchable bio-adhesion

09.09.2008
Researchers have developed a new type of property-changing polymer: It is water-repellent at 37°C, which makes it an ideal culture substrate for biological cells. At room temperature it attracts water, allowing the cells to be detached easily from the substrate.

What effects do new drugs have on the human body – particularly at cellular level? Can doctors administer them without risk, or do they have toxic side effects? Pharmaceutical companies carry out a variety of toxicity tests on new drugs in order to answer such questions. Cell cultures form the basis for these tests: The researchers place isolated cells in small plastic dishes, add a nutrient solution and place the dishes in an incubator heated to 37 degrees Celsius.

To provide an ideal breeding ground for the cells, the dishes are made of insulating polystyrene. Once the cells have multiplied to the required number, the drug is added. However, to examine the cells’ reaction to the drug, the researchers then have to remove the cultured cells from the dish. The problem is that the cells often adhere so firmly to the surface of the dish that an enzyme has to be introduced to detach them. “The cells employed in toxicity tests are particularly sensitive, and can be damaged by the added enzyme. This makes it difficult to interpret the test results. It cannot be established without doubt whether the cells’ reaction to the drug has been influenced by damage caused by the method used to extract them from the dish” says Dr. Claus Duschl, department head at the Fraunhofer Institute for Biomedical Engineering IBMT in Potsdam-Golm.

A possible solution is the stimuli-responsive polymer developed by a team led by Dr. Jean-François Lutz of the Fraunhofer Institute for Applied Polymer Research IAP, assisted by colleagues at the IBMT and the Max Planck Institute of Colloids and Interfaces. “At 37 degrees Celsius, the usual incubation temperature for cell cultures, this material is water-repellent (hydrophobic) – the cells feel at ease in this environment and respond by multiplying rapidly. If the substrate is cooled to 25 degrees, equivalent to room temperature, the material becomes hydrophilic (attracts water): The cells try to avoid contact with the substrate by reducing their surface area, curling up into almost spherical shapes. This enables them to be rinsed off easily, so there is no longer any need to add an enzyme,” explains Lutz.

This is not the first thermoresponsive polymer. The big difference is that it is based on polyethylene glycol (PEG), which unlike other materials of this type is biocompatible. It is thus an ideal substrate for cell cultures. The new material has the added advantage of being water-soluble and non-toxic. Lutz estimates that it will be possible to mass-produce Petri dishes coated with the new property-changing polymer in about two or three years’ time.

Dr. Jean-Francois Lutz | Fraunhofer-Gesellschaft
Further information:
http://www.fraunhofer.de/
http://www.fraunhofer.de/EN/press/pi/2008/09/ResearchNews092008Topic4.jsp

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>