Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Switch in cell's 'power plant' declines with age, rejuvenated by drug

17.08.2011
Researchers at the Johns Hopkins University School of Medicine have found a protein normally involved in blood pressure regulation in a surprising place: tucked within the little "power plants" of cells, the mitochondria.

The quantity of this protein appears to decrease with age, but treating older mice with the blood pressure medication losartan can increase protein numbers to youthful levels, decreasing both blood pressure and cellular energy usage.

The researchers say these findings, published online during the week of August 15, 2011, in the Proceedings of the National Academy of Sciences, may lead to new treatments for mitochondrial–specific, age-related diseases, such as diabetes, hearing loss, frailty and Parkinson's disease.

"We've identified a functional and independently operated system that appears to influence energy regulation within the mitochondria," explains Jeremy Walston, M.D., professor of geriatric medicine at Hopkins. "This mitochondrial angiotensin system is activated by commonly utilized blood pressure medications, and influences both nitric oxide and energy production when signaled."

Previous research showed that manipulating angiotensin in the body's cells had unexpectedly affected mitochondrial energy production, so Walston and Peter Abadir , M.D., an assistant professor of geriatric medicine, decided to examine the role of angiotensin within the mitochondria. Using high-powered microscopy, they and their collaborators found evidence within the mitochondria of angiotensin as well as one of the protein receptors that bind to and detect it. They also pinpointed the angiotensin receptor's exact locations within the mitochondria of mouse kidney, liver, neuron and heart cells as well as in human white blood cells.

The team then treated mitochondria with a chemical known to activate the angiotensin receptors and measured the cell's response. This resulted in a decrease in oxygen consumption by half and a small increase in nitric oxide production—indicating less energy made by the mitochondria and lowered blood pressure, respectively. Explains Walston, "Activating angiotensin receptors within the mitochondria with these agents led to lowered blood pressure and decreased cellular energy use."

But they found even more than just an energy-regulating mechanism; after testing the angiotensin system in mitochondria of both young and old mice, they noticed a decrease by almost a third of the amount of the angiotensin receptor type 2 in the mitochondria in older mice, meaning that cells in older mice were unable to control energy use as well. The researchers then tried treating these older mice with the blood pressure lowering drug losartan daily for 20 weeks and found that the number of these receptors increased. "Treatment of the old mice with losartan resulted in a marked increase in the number of receptors that are known to positively influence blood pressure and decrease inflammation," says Walston.

Declining mitochondria are known to influence chronic diseases in older adults, explains Walston, whose next step is to translate studies from cell culture and animal based studies to human studies in hopes of developing new therapies. "Our findings will help us determine if the drugs that interact with this receptor will also lead to improvement of mitochondrial function and energy production. This, in turn, could facilitate the treatment of a number of chronic diseases of older adults."

This study was funded by the Johns Hopkins Older Americans Independence Center, the National Institute on Aging and the American Geriatrics Society.

Additional authors on this study from the Division of Geriatric Medicine and Gerontology at Johns Hopkins were Peter Abadir, Alka Jain, and Neal Fedarko.

John Lazarou | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>