Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swiss Scientists Explain Evolution of Extreme Parasites

14.10.2014

Extreme adaptations of species often cause such significant changes that their evolutionary history is difficult to reconstruct.

Zoologists at the University of Basel in Switzerland have now discovered a new parasite species that represents the missing link between fungi and an extreme group of parasites. Researches are now able to understand for the first time the evolution of these parasites, causing disease in humans and animals. The study has been published in the latest issue of the scientific journal Proceedings of the National Academy of Sciences (PNAS).


The water flea (Daphnia magna) serves as the host of the newly described parasite. The animal measures about 4mm in length. Dieter Eber, University of Basel


Electronmicroscopic picture of the spores of the newly discovered microsporidium M. daphniae. The spores measure around 2 micrometer in length. Ronny Larsson

Parasites use their hosts to simplify their own lives. In order to do so, they evolved features that are so extreme that it is often impossible to compare them to other species. The evolution of these extreme adaptations is often impossible to reconstruct.

The research group lead by Prof. Dieter Ebert from the Department of Environmental Science at the University of Basel has now discovered the missing link that explains how this large group of extreme parasites, the microsporidia, has evolved. The team was supported in their efforts by scientists from Sweden and the U.S.

Microsporidia are a large group of extreme parasites that invade humans and animals and cost great damage for health care systems and in agriculture; over 1,200 species are known. They live inside their host's cells and have highly specialized features:

They are only able to reproduce inside the host's cells, they have the smallest known genome of all organisms with a cell nucleus (eukaryotes) and they posses no mitochondria of their own (the cell's power plant). In addition, they developed a specialized infection apparatus, the polar tube, which they use to insert themselves into the cells of their host. Due to their phenomenal high molecular evolution rate, genome analysis has so far been rather unsuccessful: Their great genomic divergence from all other known organisms further complicates the study of their evolutionary lineage.

Between fungi and parasite

The team of zoologists lead by Prof. Dieter Ebert has been studying the evolution of microsporidia for years. When they discovered a new parasite in water fleas a couple of years ago, they classified this undescribed species as a microsporidium, mostly because it possessed the unique harpoon-like infection apparatus (the polar-tube), one of the hallmarks of microsporidia.

The analysis of the entire genome had several surprises in store for them: The genome resembles more that of a fungi than a microsporidium and, in addition, also has a mitochondrial genome. The new species, now named Mitosporidium daphniae, thus represents the missing link between fungi and microsporidia.

With the help of scientists in Sweden and the U.S., the Basel researchers rewrote the evolutionary history of microsporidia. First, they showed that the new species derives from the ancestors of all known microsporidians and further, that the microsporidians derive from the most ancient fungi; thus its exact place in the tree of life has finally been found.

Further research confirms that the new species does in fact have a microsporidic, intracellular and parasitic lifestyle, but that its genome is rather atypical for a microsporidium. It resembles much more the genome of their fungal ancestors.

Genome modifications
The scientists thus conclude that the microsporidia adopted intracellular parasitism first and only later changed their genome significantly. These genetic adaptations include the loss of mitochondria, as well as extreme metabolic and genomic simplification. “Our results are not only a milestone for the research on microsporidia, but they are also of great interest to the study of parasite-specific adaptations in evolution in general”, explains Ebert the findings.

Original source
Haag, K.L., James, T.Y., Pombert, J.-F., Larsson, R., Schaer, T.M.M., Refardt, D. & Ebert, D. 2014.
Evolution of a morphological novelty occurred before genome compaction in a lineage of extreme parasites
Proceedings of the National Academy of Sciences, USA, 13. Oktober 2014) www.pnas.org/cgi/doi/10.1073/pnas.1410442111

Further information
Prof. Dieter Ebert, Department for Environmental Science, Zoological Institute, phone: +41 (0)61 267 03 60, fax +41 (0)61 267 03 60, email: dieter.ebert@unibas.ch

Olivia Poisson | Universität Basel
Further information:
http://www.unibas.ch

Further reports about: Department Environmental Evolution Sciences ancestors discovered fungi genomic new species parasite parasites species

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>