Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sweet surprises

03.05.2010
By characterizing the sugar content of cells, researchers have begun to reconstruct important ‘quality control’ mechanisms for protein production

By characterizing the sugar content of cells, researchers have begun to reconstruct important ‘quality control’ mechanisms for protein production

Many proteins undergo N-glycosylation, in which they are decorated with combinations of carbohydrates. These modifications not only contribute directly to normal protein function but also act as a flag for defective proteins, which get steered into a pathway known as endoplasmic reticulum-associated degradation (ERAD) with the assistance of enzymes that remove glycosylations to release free oligosaccharides (fOSs).

As an undergraduate, Tadashi Suzuki discovered the enzyme peptide:N-glycanase (PNGase) in the cytosol of mammalian cells; now, as a team leader at the RIKEN Advanced Science Institute, Wako, his group has uncovered valuable details about this enzyme’s critical contribution to the early stages of ERAD.

Suzuki and postdoctoral researcher Hiroto Hirayama recently turned to brewer’s yeast, a popular model organism, as a means to study an enigmatic PNGase-independent pathway for fOS production initially identified in mammalian cells. To achieve this, they developed an approach to selectively isolate these molecules, combining chemical labeling of oligosaccharides with a method for eliminating background contamination from â-1,6-glucans, a component of the yeast cell wall.

This strategy yielded a full library of yeast cytosolic fOSs—and some unexpected results. “To our surprise, we only detected PNGase-dependent fOSs under our experimental conditions,” says Suzuki. “This clearly indicates that mechanisms for generation of fOSs are quite distinct between mammals and yeast.”

To ensure that the full range of fOS diversity was represented, they performed their analysis in yeast lacking expression of the cytosol/vacuolar á-mannosidase (Ams1p), the only enzyme known to break down fOSs. “Very sophisticated and complicated glycan-recognition mechanisms for ERAD have been uncovered, but these conclusions have been drawn using a few model proteins,” says Suzuki. “On the other hand, we analyzed the whole population of fOSs, which means we can get information about glycan structures for all ERAD substrates.”

These data revealed that misfolded proteins can undergo diverse modifications prior to ERAD, including glycosylation by an enzyme within the Golgi apparatus, a cellular structure in which proteins typically undergo their final modifications. This suggests the existence of a previously unidentified screening mechanism at this late stage in protein synthesis that selectively redirects misfolded molecules to the ERAD system.

These and other findings suggest a great deal of hidden complexity remaining to be uncovered, and Suzuki’s team is now analyzing yeast strains with mutations in various proteins that help ‘read’ and interpret protein glycosylations. “Hopefully, through comparative fOS analysis for these strains, we can provide more precise mechanisms for the role of N-glycans in ERAD,” he says.

The corresponding author for this highlight is based at the Glycometabolome Team, RIKEN Advanced Science Institute

Journal information

1. Hirayama, H., Seino, J., Kitajima, T., Jigami, Y. & Suzuki, T. Free oligosaccharides to monitor glycoprotein endoplasmic reticulum-associated degradation in Saccharomyces cerevisiae. The Journal of Biological Chemistry published online 20 February 2010 (doi: 10.1074/jbc.M109.082081)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6245
http://www.researchsea.com

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>