Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sweet as can be: how E. coli gets ahead

16.11.2009
Scientists at the University of York have discovered how certain bacteria such as Escherichia coli have evolved to capture rare sugars from their environment giving them an evolutionary advantage in naturally competitive environments like the human gut.

Microbes are well-known for their ability to grow in demanding and nutritionally poor environments, which has allowed them to colonise some of the most remote places on the planet. Bacteria living in theoretically nutrient-rich environments like the mammalian intestine face similar challenges due to intense competition between bacterial species in the intestine for the finite amount of available food.

Researchers led by Dr Gavin Thomas in the University’s Department of Biology discovered that a protein present in the intestinal bacterium Escherichia coli was a unique sugar transporter.

Common sugars like glucose form a cyclic structure called a ‘pyranose’ when dissolved in water. All transporters for glucose recognise the pyranose form. But, for sugars such as galactose, which is commonly found in dairy produce, around 10 per cent is found in a different ring form called a ‘furanose’.

Initial work on the unknown E. coli transporter by Dr Thomas’s team suggested that it was a galactose transporter. The researchers knew that E. coli has a galactopyranose transporter already, so why should the bacterium have evolved another system to do exactly the same thing?

The answer to the problem was discovered when researchers led by Professor Keith Wilson in the York Structural Biology Laboratory solved the 3D structure of the protein, revealing that it was bound to the rarer furanose form of galactose. Experiments by Dr Jennifer Potts in the University’s Centre for Magnetic Resonance confirmed that the transporter was the first biological example to recognise furanose over pyranose forms.

Dr Thomas said: “The picture that emerges is that bacteria have evolved many related transporters to allow them to exploit every possible potential source of nutrient in their environment. Being able to use the extra 10 per cent of galactose available in the gut appears a trivial adaptation. But it is exactly the small change required to allow E. coli to grow a little bit faster when galactose is present in the gut, and so persist at the expense of other species of bacteria.”

The work was funded through a Biotechnology and Biological Sciences Research Council quota studentship to Dr Richard Horler in the laboratory of Dr Thomas. The research involved Dr Axel Muller, from the laboratory of Professor Wilson, and NMR expertise from David Williamson and Dr Potts. The work was published in the Journal of Biological Chemistry.

David Garner | EurekAlert!
Further information:
http://www.york.ac.uk

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>