Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Not so sweet: Over-consumption of sugar linked to aging

09.03.2009
We know that lifespan can be extended in animals by restricting calories such as sugar intake. Now, according to a study published in the journal PLoS Genetics, Université de Montréal scientists have discovered that it's not sugar itself that is important in this process but the ability of cells to sense its presence.

Aging is a complex phenomenon and the mechanisms underlying aging are yet to be explained. What researchers do know is that there is a clear relationship between aging and calorie intake. For example, mice fed with half the calories they usually eat can live 40 percent longer. How does this work?

As part of the PLoS Genetics study, Université de Montréal Biochemistry Professor Luis Rokeach and his student Antoine Roux discovered to their surprise that if they removed the gene for a glucose sensor from yeast cells, they lived just as long as those living on a glucose-restricted diet. In short, the fate of these cells doesn't depend on what they eat but what they think they're eating.

There are two obvious aspects of calorie intake: tasting and digestion. By the time nutrients get to our cells there is an analogous process: sensors on the surface of the cell detect the presence of, for example, the sugar glucose and molecules inside the cell break down the glucose, converting it to energy. Of these processes, it is widely thought that the by-products of broken down sugars are the culprits in aging. The study by Rokeach and Roux suggests otherwise.

To understand aging, Rokeach and Roux in collaboration with Université de Montréal Biochemistry Professors Pascal Chartrand and Gerardo Ferbeyre used yeast as a model organism. At a basic level, yeast cells are surprisingly similar and age much like human cells, as well as being easy to study.

The research team found that the lifespan of yeast cells increased when glucose was decreased from their diet. They then asked whether the increase in lifespan was due to cells decreasing their ability to produce energy or to the decrease in signal to the cells by the glucose sensor.

The scientists found that cells unable to consume glucose as energy source are still sensitive to the pro-aging effects of glucose. Conversely, obliterating the sensor that measures the levels of glucose significantly increased lifespan.

"Thanks to this study, the link between the rise in age-related diseases and the over-consumption of sugar in today's diet is clearer. Our research opens a door to new therapeutic strategies for fighting age-related diseases," says Professor Rokeach.

Sylvain-Jacques Desjardins | EurekAlert!
Further information:
http://www.umontreal.ca

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>