Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swedish scientists stop acorn barnacles

15.03.2010
Marine organisms that fasten to the bottoms of ships have always been a scourge to seafaring. By monitoring how the larvae of acorn barnacles go about finding suitable spots to attach themselves, researchers at Linköping University in Sweden have managed to design surfaces that prevent growths - without using poisonous chemicals.

Acorn barnacles, which are animals, are among the most notorious stowaways at sea. A vessel with its hull covered by their hard calcium shells moves more slowly and uses more fuel.

The most common method to prevent surface fouling is to apply toxic hull paint. The most effective substance has been tributhyl tin (TBT), which is now totally banned. But until now no really good alternatives to toxic paint have been found.

"Our strategy, instead, is to design surfaces that the barnacle glue doesn't stick to. The idea is for the larvae to swim off and find another place to fasten themselves for the rest of their lives," says Tobias Ekblad, a doctoral candidate in molecular physics and an associate in the EU project AMBIO.

To study how a larva walks around on its 'feet' - actually the front parts of a couple of antennae - and leaves micrometer-size footprints, the scientists make use of so-called surface plasmon resonance. This measurement method, based on electromagnetic wave movements in the interface between the surface and sea water, can detect the minimal optical changes that occur when the thin (10 millionths of a millimeter) footprints are made. In this way they can see in real time how the prints occur and monitor their movements back and forth across the surface.

The findings presented in Tobias Ekblad's thesis show that what determines whether the larvae like a surface or not is chemistry. Ekblad has developed a method to cover a material with a thin layer of water-filled gel, a hydrogel, that has been tested with different chemical components. For example, layers containing the polymer polyethylene glycol (PEG) have been shown to yield excellent results.

The researchers have also studied the effect of how blood coagulates on various surfaces, a problem that is encountered when prostheses are operated into the body. As in the barnacle growth project, they have found that the usable materials are those that dramatically decrease the binding of proteins to the surface.

Contact:
Tobias Ekblad, phone: +46 (0)13-285648; mobile: +46 (0)70-3345768, tobias.ekblad@liu.se

Pressofficer Åke Hjelm, +46-13281 395;ake.hjem@liu.se

Reference link: AMBIO (Advanced Nanostructured Surfaces for the Control of Biofouling http://www.ambio.bham.ac.uk/index.shtml

Åke Hjelm | idw
Further information:
http://www.ambio.bham.ac.uk/index.shtml
http://liu.diva-portal.org/smash/record.jsf?pid=diva2:302627
http://www.ambio.bham.ac.uk/index.shtml AMBIO

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>