Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swedish researcher finds missing piece of fossil puzzle

15.07.2009
The mode of reproduction seen in modern sharks is nearly 400 million years old.

That is the conclusion drawn by Professor Per Erik Ahlberg, Uppsala University, from his discovery of a so-called "clasper" in a primitive fossil fish earlier this year. The research results are published today in Nature.

In February this year, a paper published in Nature by a team of Australian and British researchers showed that placoderms, a group of ancient fishes that died out more than 350 million years ago, gave birth to live young. Beautifully preserved fossil embryos in the body cavity of the placoderm Incisoscutum showed that these fishes, close to the common origin of all jawed vertebrates, had a mode of reproduction similar to modern sharks.

Live birth requires internal fertilisation; sharks achieve this by using a "clasper", an extension of the pelvic fin that functions like a penis. The authors looked for a clasper in their placoderm fossils but couldn't find one, so they were forced to argue that it had been made of soft cartilage and had not been preserved.

Shortly afterwards, Per Erik Ahlberg from Uppsala University visited one of the Australian researchers and spotted a perfectly preserved bony clasper in one of their Incisoscutum fossils.

"It was lying in plain view but had been misinterpreted as part of the pelvis and overlooked," he says.

Together with the original authors he is publishing a short paper in this week's Nature that presents this missing piece of the puzzle and completes the picture of placoderm reproduction from mating to birth.

"It provides a pedigree of nearly 400 million years for the "advanced" and seemingly specialised reproductive biology of modern sharks," says Per Ahlberg.

Per Erik Ahlberg | EurekAlert!
Further information:
http://www.uu.se

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>