Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Suspended Animation Protects Against Lethal Hypothermia

How is it that some people who apparently freeze to death, with no heart rate or respiration for extended periods, can be brought back to life with no long-term negative health consequences? New findings from the laboratory of cell biologist Mark B. Roth, Ph.D., of Fred Hutchinson Cancer Research Center, may help explain the mechanics behind this widely documented phenomenon.

Reporting online ahead of the July 1 print issue of Molecular Biology of the Cell, Roth, a member of the Hutchinson Center’s Basic Sciences Division, and colleagues show that two widely divergent model organisms – yeast and nematodes, or garden worms – can survive hypothermia, or potentially lethal cold, if they are first put into a state of suspended animation by means of anoxia, or extreme oxygen deprivation.

Roth and colleagues found that under normal conditions, yeast and nematode embryos cannot survive extreme cold. After 24 hours of exposure to temperatures just above freezing, 99 percent of the creatures expire. In contrast, if the organisms are first deprived of oxygen and thus enter a state of anoxia-induced suspended animation, 66 percent of the yeast and 97 percent of the nematode embryos will survive the cold. Once normal growth conditions are resumed – upon rewarming and reintroduction of oxygen – the organisms will reanimate and go on to live a normal lifespan.

A better understanding of the potentially beneficial, symbiotic relationship between low oxygen and low temperatures may one day lead to the development of improved techniques for extending the shelf life of human organs for transplantation, Roth said.

“We have found that extension of survival limits in the cold is possible if oxygen consumption is first diminished,” he said. “Our experiments in yeast and nematodes suggest that organs may last longer outside the body if their oxygen consumption is first reduced before they are made cold.”

Roth’s laboratory studies the potential clinical benefits of metabolic flexibility – from anoxia-induced reversible suspended animation to metabolic hibernation brought on by exposure to agents such as hydrogen sulfide. The ultimate goal of this work is to find ways to temporarily lower metabolism – like dialing down a dimmer switch on a lamp – as a means to “buy time” for patients in trauma situations, such as victims of heart attack or blood-loss injury, by reducing their need for oxygen until definitive medical care can be given.

Roth first got the idea to study the link between anoxia-induced suspended animation and hypothermia from documented cases in which humans have managed to make complete recoveries after apparently freezing to death. Widely publicized cases include Canadian toddler Erica Nordby, who in the winter of 2001 wandered outside clad only in a diaper. Her heart had stopped beating for two hours and her body temperature had plummeted to 61 degrees Fahreneit before she was discovered, rewarmed and resuscitated. Another incident that made headlines was that of a Japanese man, Mitsutaka Uchikoshi, who in 2006 fell asleep on a snowy mountain and was found by rescuers 23 days later with a core body temperature of 71 degrees Fahrenheit. He, too, was resuscitated and made a full recovery.

“There are many examples in the scientific literature of humans who appear frozen to death. They have no heartbeat and are clinically dead. But they can be reanimated. Similarly, the organisms in my lab can be put into a state of reversible suspended animation through oxygen deprivation and other means. They appear dead but are not. We wondered if what was happening with the organisms in my laboratory was also happening in people like the toddler and the Japanese mountain climber. Before they got cold did they somehow manage to decrease their oxygen consumption? Is that what protected them? Our work in nematodes and yeast suggests that this may be the case, and it may bring us a step closer to understanding what happens to people who appear to freeze to death but can be reanimated,” Roth said.

The mechanism by which anoxia-induced suspended animation protects against extreme cold has to do with preventing the cascade of events that lead to biological instability and, ultimately, death. For example, suspended animation preserves the integrity of cell-cycle control by preventing an organism’s cells from dividing in an error-prone fashion. During suspended animation, the cell cycle is reversibly halted. Upon reanimation, the cycle resumes as normal.

“When an organism is suspended its biological processes cannot do anything wrong,” Roth said. “Under conditions of extreme cold, sometimes that is the correct thing to be doing; when you can’t do it right, don’t do it at all.”

The first author of the paper, Kin Chan, Ph.D., formerly a postdoctoral research associate in the Roth lab, is now with the Laboratory of Molecular Genetics in the National Institute of Environmental Health Sciences at the National Institutes of Health. The NIH and the National Science Foundation funded this research.

Note for media only:
• To obtain a copy of the Molecular Biology of the Cell paper, “Suspended Animation Extends Survival Limits of C. elegans and S. cerevisiae at low temperatures,” or to arrange an interview with Roth, please contact Kristen Woodward in Fred Hutchinson Cancer Research Center media relations at 206-667-5095 or
• A time-lapse video of anoxia-induced suspended animation in a nematode is also available at

The video, courtesy of the Roth lab, depicts a 10-hour experiment shot at 175x real time.

At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world.

Kristen Woodward | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>