Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Suspended Animation Protects Against Lethal Hypothermia

14.06.2010
How is it that some people who apparently freeze to death, with no heart rate or respiration for extended periods, can be brought back to life with no long-term negative health consequences? New findings from the laboratory of cell biologist Mark B. Roth, Ph.D., of Fred Hutchinson Cancer Research Center, may help explain the mechanics behind this widely documented phenomenon.

Reporting online ahead of the July 1 print issue of Molecular Biology of the Cell, Roth, a member of the Hutchinson Center’s Basic Sciences Division, and colleagues show that two widely divergent model organisms – yeast and nematodes, or garden worms – can survive hypothermia, or potentially lethal cold, if they are first put into a state of suspended animation by means of anoxia, or extreme oxygen deprivation.

Roth and colleagues found that under normal conditions, yeast and nematode embryos cannot survive extreme cold. After 24 hours of exposure to temperatures just above freezing, 99 percent of the creatures expire. In contrast, if the organisms are first deprived of oxygen and thus enter a state of anoxia-induced suspended animation, 66 percent of the yeast and 97 percent of the nematode embryos will survive the cold. Once normal growth conditions are resumed – upon rewarming and reintroduction of oxygen – the organisms will reanimate and go on to live a normal lifespan.

A better understanding of the potentially beneficial, symbiotic relationship between low oxygen and low temperatures may one day lead to the development of improved techniques for extending the shelf life of human organs for transplantation, Roth said.

“We have found that extension of survival limits in the cold is possible if oxygen consumption is first diminished,” he said. “Our experiments in yeast and nematodes suggest that organs may last longer outside the body if their oxygen consumption is first reduced before they are made cold.”

Roth’s laboratory studies the potential clinical benefits of metabolic flexibility – from anoxia-induced reversible suspended animation to metabolic hibernation brought on by exposure to agents such as hydrogen sulfide. The ultimate goal of this work is to find ways to temporarily lower metabolism – like dialing down a dimmer switch on a lamp – as a means to “buy time” for patients in trauma situations, such as victims of heart attack or blood-loss injury, by reducing their need for oxygen until definitive medical care can be given.

Roth first got the idea to study the link between anoxia-induced suspended animation and hypothermia from documented cases in which humans have managed to make complete recoveries after apparently freezing to death. Widely publicized cases include Canadian toddler Erica Nordby, who in the winter of 2001 wandered outside clad only in a diaper. Her heart had stopped beating for two hours and her body temperature had plummeted to 61 degrees Fahreneit before she was discovered, rewarmed and resuscitated. Another incident that made headlines was that of a Japanese man, Mitsutaka Uchikoshi, who in 2006 fell asleep on a snowy mountain and was found by rescuers 23 days later with a core body temperature of 71 degrees Fahrenheit. He, too, was resuscitated and made a full recovery.

“There are many examples in the scientific literature of humans who appear frozen to death. They have no heartbeat and are clinically dead. But they can be reanimated. Similarly, the organisms in my lab can be put into a state of reversible suspended animation through oxygen deprivation and other means. They appear dead but are not. We wondered if what was happening with the organisms in my laboratory was also happening in people like the toddler and the Japanese mountain climber. Before they got cold did they somehow manage to decrease their oxygen consumption? Is that what protected them? Our work in nematodes and yeast suggests that this may be the case, and it may bring us a step closer to understanding what happens to people who appear to freeze to death but can be reanimated,” Roth said.

The mechanism by which anoxia-induced suspended animation protects against extreme cold has to do with preventing the cascade of events that lead to biological instability and, ultimately, death. For example, suspended animation preserves the integrity of cell-cycle control by preventing an organism’s cells from dividing in an error-prone fashion. During suspended animation, the cell cycle is reversibly halted. Upon reanimation, the cycle resumes as normal.

“When an organism is suspended its biological processes cannot do anything wrong,” Roth said. “Under conditions of extreme cold, sometimes that is the correct thing to be doing; when you can’t do it right, don’t do it at all.”

The first author of the paper, Kin Chan, Ph.D., formerly a postdoctoral research associate in the Roth lab, is now with the Laboratory of Molecular Genetics in the National Institute of Environmental Health Sciences at the National Institutes of Health. The NIH and the National Science Foundation funded this research.

Note for media only:
• To obtain a copy of the Molecular Biology of the Cell paper, “Suspended Animation Extends Survival Limits of C. elegans and S. cerevisiae at low temperatures,” or to arrange an interview with Roth, please contact Kristen Woodward in Fred Hutchinson Cancer Research Center media relations at 206-667-5095 or kwoodwar@fhcrc.org.
• A time-lapse video of anoxia-induced suspended animation in a nematode is also available at http://www.fhcrc.org/about/ne/news/2010/06/10/suspended.html

The video, courtesy of the Roth lab, depicts a 10-hour experiment shot at 175x real time.

At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world. www.fhcrc.org

Kristen Woodward | Newswise Science News
Further information:
http://www.fhcrc.org

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>