Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Suspended Animation Protects Against Lethal Hypothermia

14.06.2010
How is it that some people who apparently freeze to death, with no heart rate or respiration for extended periods, can be brought back to life with no long-term negative health consequences? New findings from the laboratory of cell biologist Mark B. Roth, Ph.D., of Fred Hutchinson Cancer Research Center, may help explain the mechanics behind this widely documented phenomenon.

Reporting online ahead of the July 1 print issue of Molecular Biology of the Cell, Roth, a member of the Hutchinson Center’s Basic Sciences Division, and colleagues show that two widely divergent model organisms – yeast and nematodes, or garden worms – can survive hypothermia, or potentially lethal cold, if they are first put into a state of suspended animation by means of anoxia, or extreme oxygen deprivation.

Roth and colleagues found that under normal conditions, yeast and nematode embryos cannot survive extreme cold. After 24 hours of exposure to temperatures just above freezing, 99 percent of the creatures expire. In contrast, if the organisms are first deprived of oxygen and thus enter a state of anoxia-induced suspended animation, 66 percent of the yeast and 97 percent of the nematode embryos will survive the cold. Once normal growth conditions are resumed – upon rewarming and reintroduction of oxygen – the organisms will reanimate and go on to live a normal lifespan.

A better understanding of the potentially beneficial, symbiotic relationship between low oxygen and low temperatures may one day lead to the development of improved techniques for extending the shelf life of human organs for transplantation, Roth said.

“We have found that extension of survival limits in the cold is possible if oxygen consumption is first diminished,” he said. “Our experiments in yeast and nematodes suggest that organs may last longer outside the body if their oxygen consumption is first reduced before they are made cold.”

Roth’s laboratory studies the potential clinical benefits of metabolic flexibility – from anoxia-induced reversible suspended animation to metabolic hibernation brought on by exposure to agents such as hydrogen sulfide. The ultimate goal of this work is to find ways to temporarily lower metabolism – like dialing down a dimmer switch on a lamp – as a means to “buy time” for patients in trauma situations, such as victims of heart attack or blood-loss injury, by reducing their need for oxygen until definitive medical care can be given.

Roth first got the idea to study the link between anoxia-induced suspended animation and hypothermia from documented cases in which humans have managed to make complete recoveries after apparently freezing to death. Widely publicized cases include Canadian toddler Erica Nordby, who in the winter of 2001 wandered outside clad only in a diaper. Her heart had stopped beating for two hours and her body temperature had plummeted to 61 degrees Fahreneit before she was discovered, rewarmed and resuscitated. Another incident that made headlines was that of a Japanese man, Mitsutaka Uchikoshi, who in 2006 fell asleep on a snowy mountain and was found by rescuers 23 days later with a core body temperature of 71 degrees Fahrenheit. He, too, was resuscitated and made a full recovery.

“There are many examples in the scientific literature of humans who appear frozen to death. They have no heartbeat and are clinically dead. But they can be reanimated. Similarly, the organisms in my lab can be put into a state of reversible suspended animation through oxygen deprivation and other means. They appear dead but are not. We wondered if what was happening with the organisms in my laboratory was also happening in people like the toddler and the Japanese mountain climber. Before they got cold did they somehow manage to decrease their oxygen consumption? Is that what protected them? Our work in nematodes and yeast suggests that this may be the case, and it may bring us a step closer to understanding what happens to people who appear to freeze to death but can be reanimated,” Roth said.

The mechanism by which anoxia-induced suspended animation protects against extreme cold has to do with preventing the cascade of events that lead to biological instability and, ultimately, death. For example, suspended animation preserves the integrity of cell-cycle control by preventing an organism’s cells from dividing in an error-prone fashion. During suspended animation, the cell cycle is reversibly halted. Upon reanimation, the cycle resumes as normal.

“When an organism is suspended its biological processes cannot do anything wrong,” Roth said. “Under conditions of extreme cold, sometimes that is the correct thing to be doing; when you can’t do it right, don’t do it at all.”

The first author of the paper, Kin Chan, Ph.D., formerly a postdoctoral research associate in the Roth lab, is now with the Laboratory of Molecular Genetics in the National Institute of Environmental Health Sciences at the National Institutes of Health. The NIH and the National Science Foundation funded this research.

Note for media only:
• To obtain a copy of the Molecular Biology of the Cell paper, “Suspended Animation Extends Survival Limits of C. elegans and S. cerevisiae at low temperatures,” or to arrange an interview with Roth, please contact Kristen Woodward in Fred Hutchinson Cancer Research Center media relations at 206-667-5095 or kwoodwar@fhcrc.org.
• A time-lapse video of anoxia-induced suspended animation in a nematode is also available at http://www.fhcrc.org/about/ne/news/2010/06/10/suspended.html

The video, courtesy of the Roth lab, depicts a 10-hour experiment shot at 175x real time.

At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world. www.fhcrc.org

Kristen Woodward | Newswise Science News
Further information:
http://www.fhcrc.org

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>