Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Suspect gene corrupts neural connections

18.08.2014

'Diseases of synapses' demo'd in a dish -- NIH-funded study

Researchers have long suspected that major mental disorders are genetically-rooted diseases of synapses – the connections between neurons. Now, investigators supported in part by the National Institutes of Health have demonstrated in patients' cells how a rare mutation in a suspect gene disrupts the turning on and off of dozens of other genes underlying these connections.


Synapses -- sites of intercellular communications -- are revealed in a mature iPSC cortex neuron derived from a participant in the study. Immune-based staining shows synapse markers (red, green) and the cell's nucleus (blue).

Credit: Hongjun Song, Ph.D., Johns Hopkins University

"Our results illustrate how genetic risk, abnormal brain development and synapse dysfunction can corrupt brain circuitry at the cellular level in complex psychiatric disorders," explained Hongjun Song, Ph.D. , of Johns Hopkins University, Baltimore, a grantee of the NIH's National Institute of Mental Health (NIMH), a funder of the study.

Song and colleagues, from universities in the United States, China, and Japan, report on their discovery in the journal Nature, August 18, 2014.

"The approach used in this study serves as a model for linking genetic clues to brain development," said NIMH director Thomas R. Insel, M.D.

Most major mental disorders, such as schizophrenia, are thought to be caused by a complex interplay of multiple genes and environmental factors. However, studying rare cases of a single disease-linked gene that runs in a family can provide shortcuts to discovery. Decades ago, researchers traced a high prevalence of schizophrenia and other major mental disorders – which often overlap genetically – in a Scottish clan to mutations in the gene DISC1 (Disrupted In Schizophrenia-1). But until now, most of what's known about cellular effects of such DISC1 mutations has come from studies in the rodent brain.

To learn how human neurons are affected, Song's team used a disease-in-a-dish technology called induced pluripotent stem cells (iPSCs). A patient's skin cells are first induced to revert to stem cells. Stem cells play a critical role in development of the organism by transforming into the entire range of specialized cells which make up an adult. In this experiment, these particular "reverted" stem cells were coaxed to differentiate into neurons, which could be studied developing and interacting in a petri dish. This makes it possible to pinpoint, for example, how a particular patient's mutation might impair synapses. Song and colleagues studied iPSCs from four members of an American family affected by DISC1-linked schizophrenia and genetically related mental disorders.

Strikingly, iPSC-induced neurons, of a type found in front brain areas implicated in psychosis, expressed 80 percent less of the protein made by the DISC1 gene in family members with the mutation, compared to members without the mutation. These mutant neurons showed deficient cellular machinery for communicating with other neurons at synapses.

The researchers traced these deficits to errant expression of genes known to be involved in synaptic transmission, brain development, and key extensions of neurons where synapses are located. Among these abnormally expressed genes were 89 previously linked to schizophrenia, bipolar disorder, depression, and other major mental disorders. This was surprising, as DISC1's role as a hub that regulates expression of many genes implicated in mental disorders had not previously been appreciated, say the researchers.

The clincher came when researchers experimentally produced the synapse deficits by genetically engineering the DISC1 mutation into otherwise normal iPSC neurons – and, conversely, corrected the synapse deficits in DISC1 mutant iPSC neurons by genetically engineering a fully functional DISC1 gene into them. This established that the DISC1 mutation, was, indeed the cause of the deficits.

The results suggest a common disease mechanism in major mental illnesses that integrates genetic risk, aberrant neurodevelopment, and synapse dysfunction. The overall approach may hold promise for testing potential treatments to correct synaptic deficits, say the researchers.

###

Reference:

Wen Z, Nguyen HN, Guo Z, Lalli MA, Wang X, Su Y, Kim N-S, Yoon K-J, Shin J, Zhang C, Makri G, Nauen D, Yu H, Guzman E, Chiang C-H, Yoritomo N, Kaibuchi K, Zou J, Christian KM, Cheng L, Ross CA, Margolis RL, Chen G, Kosik KS, Song H, Ming G-l. Synaptic dysregulation in a human iPS cell model of major mental disorders. Nature, Aug. 17, 2014.

About the National Institute of Mental Health (NIMH): The mission of the NIMH is to transform the understanding and treatment of mental illnesses through basic and clinical research, paving the way for prevention, recovery and cure. For more information, visit the NIMH website.

NINDS is the nation's leading funder of research on the brain and nervous system. The mission of NINDS is to seek fundamental knowledge about the brain and nervous system and to use that knowledge to reduce the burden of neurological disease.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

Jules Asher | Eurek Alert!

Further reports about: DISC1 Health Mental NIH NIMH connections deficits diseases disorders genes genetically neurons schizophrenia synapses

More articles from Life Sciences:

nachricht Fish Oil-Diet Benefits May be Mediated by Gut Microbes
28.08.2015 | University of Gothenburg

nachricht Bio-fabrication of Artificial Blood Vessels with Laser Light
28.08.2015 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

Im Focus: Fraunhofer IPA develops prototype of intelligent care cart

It comes when called, bringing care utensils with it and recording how they are used: Fraunhofer IPA is developing an intelligent care cart that provides care staff with physical and informational support in their day-to-day work. The scientists at Fraunhofer IPA have now completed a first prototype. In doing so, they are continuing in their efforts to improve working conditions in the care sector and are developing solutions designed to address the challenges of demographic change.

Technical assistance systems can improve the difficult working conditions in residential nursing homes and hospitals by helping the staff in their work and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Interstellar seeds could create oases of life

28.08.2015 | Physics and Astronomy

An ounce of prevention: Research advances on 'scourge' of transplant wards

28.08.2015 | Health and Medicine

Fish Oil-Diet Benefits May be Mediated by Gut Microbes

28.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>