Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surviving in hostile territory

24.03.2015

UCSB scientists discover a mechanism of self-mutation in mysterious viruses and microbes from within the Earth

Many strange creatures live in the deep sea, but few are odder than archaea, primitive single-celled bacteria-like microorganisms. Archaea go to great lengths -- eating methane or breathing sulfur or metal instead of oxygen -- to thrive in the most extreme environments on the planet.


Deep submergence vehicle Alvin, shown here onboard R/V Atlantis, was deployed to a depth of 800 meters to retrieve sediment samples.

Credit: David Valentine, UCSB

Recently, while searching the ocean's depths off the coast of Santa Monica, California, a team of UC Santa Barbara scientists discovered something odder still: a remarkable new virus that seemingly infects methane-eating archaea living beneath the ocean's floor. The investigators were further surprised to discover that this virus selectively targets one of its own genes for mutation and, moreover, that some archaea do too. The researchers' findings appear today in the journal Nature Communications.

"Our study illustrates that self-guided mutation is relevant to life within the Earth's subsurface and uncovers mechanisms by which viruses and archaea can adapt in this hostile environment," said David Valentine, a professor in UCSB's Department of Earth Science and at the campus's Marine Science Institute (MSI). "These findings raise exciting new questions about the evolution and interaction of the microbes that call Earth's interior home."

Using the submarine Alvin, Valentine and colleagues collected samples from a deep-ocean methane seep by pushing tubes into the ocean floor and retrieving sediments. The contents were brought back to the lab and fed methane gas, which helped the archaea in the samples grow. When the team assayed the samples for viral infection, they discovered a new virus with a distinctive genetic fingerprint that suggested its likely host was methane-eating archaea.

"It's now thought that there's more biomass inside the Earth than anywhere else, just living very, very slowly in this dark, energy-limited, starved environment," said co-author Sarah Bagby, a postdoctoral scholar in the Valentine lab.

The researchers used the genetic sequence of the new virus to chart other occurrences in global databases. "We found a partial genetic match from methane seeps in Norway and California," said lead author Blair Paul, a postdoctoral scholar in the Valentine lab. "The evidence suggests this viral type is distributed around the globe in deep ocean methane seeps."

Further investigation revealed another unexpected finding: a diversity-generating retroelement that greatly accelerates mutation of a specific section of the viral genome. Such small genetic elements had previously been identified in bacteria and their viruses, but never among archaea or the viruses that infect them. While the self-guided mutation element in the archaeal virus clearly resembled the known bacterial elements in many respects, the researchers found that it has a divergent evolutionary history.

"The target of guided mutation -- the tips of the virus that make first contact when infecting a cell -- was similar," said Paul. "The ability to mutate those tips is an offensive countermeasure against the cell's defenses -- a move that resembles a molecular arms race."

Having found guided mutation in a virus infecting archaea, the scientists reasoned that archaea themselves might use the same mechanism for genetic adaptation. Indeed, in an exhaustive search, they identified parallel features in the genomes of a more mysterious subterranean group of archaea known as nanoarchaea. Unlike the deep-ocean virus that uses guided mutation to alter a single gene, nanoarchaea target at least four distinct genes.

"This is a new record," said Bagby. "Previously, a few bacteria had been observed to target two genes with this mechanism. That may not seem like a huge difference, but targeting four is extraordinary. If they're all firing at once, suddenly the number of combinations of protein variants in play is really massive."

According to Valentine, the genetic mutation that engenders these potential variations may be a key element to survival of archaea beneath the Earth's surface. "The cell is choosing to modify certain proteins," he explained."It's doing its own protein engineering internally. While we don't know what those proteins are being used for, I think learning about the process can tell us something about the environment in which these organisms thrive. Right now, we know so little about life in that environment."

###

This research was supported by an NSF Dimensions of Biodiversity grant aimed at characterizing virus-mediated microbial diversity in methane seep ecosystems. Viral DNA sequencing was provided through a Gordon and Betty Moore Foundation grant to the Broad Institute. The research team also included scientists from UCLA, UC San Diego and the Department of Energy's Joint Genome Institute.

Media Contact

Julie Cohen
julie.cohen@ucsb.edu
805-893-7220

 @ucsantabarbara

http://www.ucsb.edu 

Julie Cohen | EurekAlert!

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>