Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surviving without ice

14.09.2012
Arctic crustaceans use currents, deep-water migration to survive sea ice melts
With sea ice in the Arctic melting to record lows in summer months, marine animals living there face dramatic changes to their environment. Yet some crustaceans, previously thought to spend their entire lives on the underside of sea ice, were recently discovered to migrate deep underwater and follow ocean currents back to colder areas when ice disappears.

“Our findings provide a basic new understanding of the adaptations and biology of the ice-associated organisms within the Arctic Ocean,” said Mark Moline, director of the University of Delaware’s School of Marine Science and Policy in the College of Earth, Ocean, and Environment. “They also may ultimately change the perception of ice fauna as imminently threatened by the predicted disappearance of perennial sea ice.”

Moline, Jørgen Berge of the University of Tromsø and Norwegian colleagues found the crustaceans, specifically amphipods Apherusa glacialis that resemble small shrimp, well below sea ice during a rare winter, nighttime research expedition to the Fram Strait and Eurasian section of the Arctic Ocean. They determined that the crustaceans migrate downward as part of their life cycles and ride deep-ocean currents toward the North Pole.

The crustaceans’ travels appear to be an adaptive trait that both increases survival during ice-free periods and enables them to be retained in the Arctic Ocean.

The scientists refer to their findings as the “Nemo hypothesis,” based on an analogy to the Disney movie Finding Nemo in which Nemo’s father uses deep-ocean currents for transportation. In a similar mechanism, Arctic crustaceans detached from melting sea ice move into depths where the northernmost branch of the Gulf Stream System effectively transports them back into the Arctic Ocean.

Previously, these organisms were generally considered to be passively exported either out the Fram Strait or down to inhabitable depths when released from melting sea ice – either of which would be life-threatening outcomes as they lost the habitat on which they depend to survive.

“Through the Nemo hypothesis, we offer a new and exciting perspective that, although still based on a limited dataset, might change our perception of the ice-associated organisms and their future in an Arctic Ocean potentially void of summer sea ice within the next few decades,” Berge said.

From an evolutionary perspective, the migration may be an adaptation that allowed survival in a more seasonally ice-covered Arctic, as experienced several times during the last 12,000 years. Some reports indicate that the Arctic Ocean lacked summer sea ice as late as 8,000 years ago.

The findings may help explain how ice-associated organisms can survive in large populations in the Arctic when their habitat is annually reduced by up to 80 percent in the summer before re-forming in the early winter.

“We believe that this is an important contribution towards a more comprehensive understanding of potential consequences of a continued warming of the Arctic and the predicted loss of summer sea ice,” Berge said.

The article was published in Biology Letters online on Sept. 12. The work was funded primarily by the Research Council of Norway, with support for Moline provided by the U.S.-Norway Fulbright Program through his role as Distinguished Arctic Chair.

Andrea Boyle Tippett | EurekAlert!
Further information:
http://www.udel.edu

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>